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† Background Some, but not all, plants emit isoprene. Emission of the related monoterpenes is more universal
among plants, but the amount of isoprene emitted from plants dominates the biosphere–atmosphere hydrocarbon
exchange.
† Scope The emission of isoprene from plants affects atmospheric chemistry. Isoprene reacts very rapidly with
hydroxyl radicals in the atmosphere making hydroperoxides that can enhance ozone formation. Aerosol formation
in the atmosphere may also be influenced by biogenic isoprene. Plants that emit isoprene are better able to tolerate
sunlight-induced rapid heating of leaves (heat flecks). They also tolerate ozone and other reactive oxygen species
better than non-emitting plants. Expression of the isoprene synthase gene can account for control of isoprene emis-
sion capacity as leaves expand. The emission capacity of fully expanded leaves varies through the season but the
biochemical control of capacity of mature leaves appears to be at several different points in isoprene metabolism.
† Conclusions The capacity for isoprene emission evolved many times in plants, probably as a mechanism for coping
with heat flecks. It also confers tolerance of reactive oxygen species. It is an example of isoprenoids enhancing
membrane function, although the mechanism is likely to be different from that of sterols. Understanding the regu-
lation of isoprene emission is advancing rapidly now that the pathway that provides the substrate is known.
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INTRODUCTION

It surprises most people to learn that plants emit much more
hydrocarbon into the atmosphere than that coming from
human activities, especially during extended warm
weather (Purves et al., 2004), when hydrocarbon inputs
into the atmosphere can be especially deleterious
(Monson and Holland, 2001; Purves et al., 2004). This
fact is behind the famous quote of Ronald Reagan that
‘approximately 80 % of our air pollution stems from hydro-
carbons released by vegetation’ (Pope, 1980). The large
amount of hydrocarbon coming from plants was used to
suggest that air pollution control was not needed, quoting
further: ‘so let’s not go overboard in setting and enforcing
tough emission standards from man-made sources’. Thus,
hydrocarbon emission from vegetation is of immediate
societal significance. Most of the hydrocarbon flux from
the biosphere to the atmosphere is just one compound, iso-
prene. Despite the more obvious emissions of pleasant
smells such as pine scent and lemon scent (resulting from
monoterpenes), isoprene emission is the predominant bio-
genic source of hydrocarbon in the atmosphere, roughly
equal to global emission of methane from all sources
(Guenther et al., 2006; Kesselmeier and Staudt, 1999).
This surprising finding of such a large flux of isoprene
from plants to the atmosphere raises a number of questions,
including what happens to the isoprene in the atmosphere
and why plants emit isoprene. What is known and new
information on why isoprene emission matters and why
plants emit isoprene will be discussed and then new infor-
mation on the biochemical regulation of emission rate will
be presented. The history of the discovery of isoprene

emission has been described elsewhere (Sanadze, 1991,
2004; Sharkey and Yeh, 2001).

WHY ISOPRENE EMISSIONS MATTER

Isoprene emission from plants has a significant effect on
atmospheric chemistry. In the atmosphere, NO and NO2

(collectively NOx) cycle under the influence of sunlight.
At night, all NOx is in the form of NO2. Sunlight photolyses
the NO2 and this leads to one ozone molecule per NO2

(Jacob, 1999; Monson and Holland, 2001). In the absence
of hydrocarbon, the total NOx level in the atmosphere deter-
mines the amount of ozone that can be formed. However,
oxidation of isoprene by atmospheric hydroxyl radicals
can lead to hydroperoxides (RO2) that can convert NO to
NO2 allowing more ozone production. Further reactions
can form HO2 which can also convert NO to NO2 and gen-
erate the OH radical. If isoprene is shown as RH, then the
following reactions describe the loss of one H from the
isoprene molecule (adapted from Jacob, 1999):

RHþ OHþ O2 ! RO2 þ H2O

RO2 þ NO! ROþ NO2

ROþ O2 ! R0CHOþ HO2

HO2 þ NO! OHþ NO2

2ðNO2 þ O2 ! NOþ O3Þ
Net : RHþ 4O2 ! R0HCOþ 2O3 þ H2O

As long as there are C–H bonds, the resulting hydrocarbon
can undergo further cycles to make even more ozone. The
net effect is creation of many ozone molecules from one* For correspondence. E-mail tsharkey@wisc.edu
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isoprene molecule. The reactions involve radicals and can
go in many different directions and have highly non-linear
dependencies on concentrations making it difficult to model
how isoprene emission from plants will affect the atmos-
phere. However, the contribution of isoprene to ozone for-
mation has been reported in a number of studies (Trainer
et al., 1987; Chameides et al., 1988; Fehsenfeld et al.,
1992; Williams et al., 1997). One isoprene molecule can
lead to the formation of many ozone molecules when the
NOx levels are high. When there is very little NOx, different
reactions can dominate and isoprene emission from plants
can reduce ozone in the atmosphere (Trainer et al., 1987).

A second effect of isoprene in the atmosphere is the
growth of aerosols. Aerosols are particles in the atmosphere
which give rise to Frits Went’s famous natural blue hazes
(Went, 1960) but also to significant health problems. The
yield of aerosol per molecule in the atmosphere is much
lower for isoprene than for monoterpenes and larger mol-
ecules, but because there is so much more isoprene entering
the atmosphere than other molecules, isoprene may be a
significant factor in aerosol formation (Claeys et al.,
2004; Edney et al., 2005; Kroll et al., 2005, 2006; Ng
et al., 2006; Olcese et al., 2007).

WHICH PLANTS EMIT ISOPRENE?

The taxonomic distribution of isoprene emission is broad.
Mosses (Hanson et al., 1999), ferns (Tingey et al., 1987),
gymnosperms and angiosperms (see http://www.es.lancs.
ac.uk/cnhgroup/iso-emissions.pdf for a comprehensive list)
all have members that make isoprene but also have
members that do not. Isoprene synthase has been sequenced
from several Populus species (Miller et al., 2001; Sasaki
et al., 2005; Sharkey et al., 2005) and from kudzu
(Pureria lobata) (Sharkey et al., 2005). The sequences
and gene structures indicate they are part of the TPS-b
family (Bohlmann et al., 1998; Trapp and Croteau, 2001)
of terpene synthases. Members of this gene family also
code for monoterpene and sesquiterpenes synthases in
angiosperms but are not found in gymnosperms. Because
of this, the evolution of angiosperm isoprene synthases
(IspSs) must have occurred after the split between angios-
perms and gymnosperms, and so isoprene emission
capacity in gymnosperms and angiosperms must have
evolved independently. Less is known about the sequences
of genes coding for IspS enzymes in mosses and ferns, so
no conclusions can be reached at present. As fern and
moss sequences become available, comparative genomics
will help make the evolutionary origins of isoprene
emission and terpene synthases more clear.

Even among angiosperms, isoprene emission capacity
may have evolved multiple times. The sequences for
IspSs among poplars are very similar (sequences are
known for P. alba, P. � canescens, P. tremuloides and
P. trichocarpa) (Miller et al., 2001; Sasaki et al., 2005;
Sharkey et al., 2005), but this group is very different from
the IspS of kudzu (Sharkey et al., 2005). Antibodies
against poplar IspS do not cross react with kudzu IspS
and vice versa, and neither antibody recognizes oak IspS
(Schnitzler et al., 2005; T. D. Sharkey, A. E. Wiberley and

A. R. Donohue, unpub. res.). It is likely that isoprene
synthesis capacity has evolved multiple times (Harley et al.,
1999), possibly from a reservoir of monoterpene synthase
genes (Sharkey et al., 2005). Small changes in gene sequence
can easily alter both substrate and product specificity of IspS
genes (El Tamer et al., 2003; Tholl, 2006; Kampranis et al.,
2007). Gene sequences do not support the idea of a single
origin of all IspS genes as had been proposed by Hanson
et al. (1999). Instead, it appears that isoprene emission is
more like the evolution of C4 metabolism, which arose
numerous times in response to an environmental constraint
(Sage, 2001; Sage and Pearcy, 2000).

Within any particular group of plants, there are some
traits that loosely correlate with isoprene emission but
there is significant variability. Indeed, there are some
peculiar disjunctions. North American oaks all emit
isoprene, but many European oaks do not. Instead, among
European oaks a variety of behaviours is found. Some
clades emit isoprene, some emit monoterpenes in a light-
dependent manner, and some emit very little terpene
(Loreto et al., 1998; Csiky and Seufert, 1999;
Kesselmeier and Staudt, 1999).

WHY PLANTS EMIT ISOPRENE

To ask ‘why’ plants emit isoprene is really asking what
advantage isoprene emission provides to the plant that
makes it. The energy cost of isoprene emission is quite sig-
nificant (starting from CO2, 20 ATP and 14 NADPH per
isoprene molecule; Sharkey and Yeh, 2001). The balance
between cost and benefit likely will vary such that isoprene
emission is favoured in some species but not others. This
could be a significant influence on the distribution of the
capacity for isoprene emission among plants. The nitrogen
cost of isoprene emission is small; data for experiments
reported in Wiberley et al. (2005) are about 5 mg m22

IspS of a total of 2.2 g m22 soluble protein or about
0.2 % of soluble protein is IspS.

Thermotolerance

Thermotolerance has been most often discussed as the
advantage plants gain by synthesizing isoprene. The first evi-
dence for thermotolerance was based on a photosystem II
chlorophyll fluorescence assay (Sharkey and Singsaas,
1995). This experiment indicated that isoprene had some
relationship to temperature effects. Leaf discs that do not
show damage in this assay below 45 8C do not respond to
isoprene (Logan and Monson, 1999). There are many heat-
tolerance mechanisms in plants (Sharkey and Schrader,
2006) and many of them are found in all species. The
obvious example is heat shock proteins and factors
(Vierling, 1991; Nover et al., 2001). These considerations
indicate that isoprene may protect against a specific type
of heat stress. Isoprene is emitted from leaves, is light
dependent (Sanadze and Kalandaze, 1966; Sanadze, 1969;
Rasmussen and Jones, 1973; Tingey et al., 1979; Monson
and Fall, 1989; Loreto and Sharkey, 1990) and uses
carbon directly from the Calvin cycle of photosynthesis
(Delwiche and Sharkey, 1993; Affek and Yakir, 2003;
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Schnitzler et al., 2004; Ferrieri et al., 2005). While these
aspects of isoprene emission pointed toward thermoprotec-
tion of leaves and specifically photosynthesis, the tempera-
ture environment of leaves was not well known.

It is difficult to measure the temperature of leaves because
they are typically very thin and have very little heat capacity.
The low heat capacity of leaves and high radiant energy
fluxes of sunlight make large, rapid changes in leaf tempera-
ture a possibility. A system for measuring leaf temperature
under natural conditions was devised (Fig. 1) that is
similar to one reported by Drake et al. (1970). A very fine-
wire thermocouple (0.079 mm diameter) was threaded
through two veins of the abaxial surface of leaves. One
joint of the thermocouple was pressed against the leaf
surface while the other hung about 3 cm below the leaf.
The small diameter of the thermocouple wire reduced
heating from sunlight, and in any case, both joints were in
the same radiation environment (below the leaf ), so any radi-
ation errors would be small. Also, the wire was in contact
with the leaf for some distance on either side of the measur-
ing joint, reducing conductivity errors.

Using the system shown in Fig. 1, leaf temperature in
natural conditions has been measured in oaks (Singsaas
et al., 1999), aspen (R. R. Wise, Univ. Wisc.-Oshkosh,
Oshkosh Wisc, unpubl. res.), cotton (Wise et al., 2004),
and mosses (Hanson et al., 1999). In all cases, sunlight
caused very large and rapid changes in leaf temperature.
In the example shown in Fig. 2, a range of .10 8C is
seen to occur throughout the day, except for three periods
which correspond with clouds passing overhead. This temp-
erature range was confirmed several times using a hand-
held infrared thermometer. The finding of these very large
heat flecks allowed a refinement of the thermotolerance
hypothesis for isoprene emission. Specifically, isoprene
synthesis (and consequent emission) protects against heat
flecks. This hypothesis is consistent with the distribution
of isoprene emission capacity among plant species.

However, like the distribution of C4 metabolism, both
environmental and phylogenetic influences can be seen
and strict correlations are not the rule.

The thermotolerance hypothesis is also consistent with the
distribution of isoprene emission capacity through a canopy.
Leaves at the top of a canopy are much more likely to suffer
heat flecks and, when measured under identical conditions,
leaves at the top of a canopy emit as much as four times
more isoprene relative to leaves at the bottom of the
canopy (Harley et al., 1996; Sharkey et al., 1996; Singsaas
et al., 1999). Differences in IspS activity can account for
the canopy position effect (Lehning et al., 2001).

Focusing the thermotolerance hypothesis on heat fleck
damage protection made it possible to devise more targeted
experimental tests. Additional improvements in experimen-
tal design were made possible by the discovery that
isoprene is made by the methylerythritol 4-phosphate
(MEP) pathway (Schwender et al., 1997), which is sensitive
to a specific inhibitor, fosmidomycin (Kuzuyama et al.,
1998; Zeidler et al., 1998). As a result, it was possible to
test whether plants that had the ability to make isoprene
could withstand repeated, short high temperature episodes
better than plants that did not. The answer is yes, the capacity
for isoprene emission confers tolerance to short high temp-
erature episodes (Sharkey et al., 2001; Velikova and
Loreto, 2005). For example, the data in Fig. 3 show that a
leaf in which isoprene emission was inhibited by feeding
fosmidomycin suffered more heat damage and recovered
less than leaves not fed fosmidomycin (endogenous iso-
prene) or fed fosmidomycin but supplied with isoprene in
the gas phase (exogenous isoprene). The control experiment
of showing that adding back isoprene in the gas stream
restores the thermotolerance of a fosmidomycin-poisoned
leaf proves that nonspecific effects of fosmidomycin are
not responsible for the results and makes the use of fosmido-
mycin a very strong experimental system.

In other experiments, exogenous isoprene treatment
could restore all of the thermoprotection found in leaves
emitting isoprene (table 1 of Sharkey et al., 2001). It was
shown that this is a general effect of compounds with
double bonds (alkenes) and that alkanes enhance thermal
damage. Some monoterpenes can also provide

FI G. 1. Method for measuring leaf temperature. Copper and constantan
wires of 0.079 mm diameter were made into a thermocouple that was
threaded through adjacent veins so that the thermocouple measuring
joint was pressed against the leaf. The use of very small diameter wire
increased the response time and decreased radiation errors. This system
is similar to one used by Drake et al. (1970) but different from the sugges-
tion of Ehleringer (1991) who recommended that the thermocouples be

inserted into the part of the leaf to be measured.

FI G. 2. Temperature of a white oak leaf. Measurement was made at the
top of a 30-m Quercus alba tree in Duke Forest, North Carolina.
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thermoprotection (Delfine et al., 2000; Peñuelas and Llusià,
2002; Copolovici et al., 2005). Methyl butenol, which is
related to isoprene and emitted by some pine trees
(Harley et al., 1998; Gray et al., 2003), has not been
tested for its ability to provide thermotolerance.

Feeding isoprene in the gas stream to leaves in which
isoprene emission has been poisoned by feeding fosmido-
mycin, or leaves that do not normally emit isoprene,
confers thermotolerance (Sharkey et al., 2001). The protec-
tion provided by isoprene can be seen even 24 h after heat
stress. For example, Sharkey et al. (2001) reported that
photosynthesis of Phaseolus vulgaris was reduced to
80+ 11 % (mean+ s.e., n ¼ 3) 24 h after a 2 min 46 8C
heat spike, but if 2 mL L21 isoprene (a physiologically rel-
evant level for isoprene inside leaves; Singsaas et al., 1997)
was provided in the gas stream during the heat spike, photo-
synthesis was 96+ 1 % of the pre-stress value after 24 h.
This 16 % difference in photosynthetic capacity can offset
the cost of isoprene production in plants that experience
such heating episodes.

Genetic engineering has allowed creation of poplar trees
that lack the capacity for isoprene emission and these trees
show increased damage to photosynthesis by heat spikes
relative to control trees (Behnke et al., 2007). Arabidopsis
plants transformed with an IspS gene from kudzu
(Sharkey et al., 2005) can tolerate heat stress that kills
untransformed plants (C. Barta and F. Loreto, Consiglio
Nazionale delle Ricerche (CNR), Rome, unpubl. res.).
Sasaki et al. (2007) report that arabidopsis expressing
poplar IspS are much better able to tolerate heat stress.
One the other hand, arabidopsis plants expressing an IspS
gene from Populus � canescens did not show enhanced tol-
erance to heat spikes (Loivamäki et al., 2007a), although

the assay did not result in heat spike-induced damage to
wild-type plants, and the isoprene emission rate was not
very much higher than the background emission from wild-
type plants so it is difficult to interpret this experiment.
Thus, (a) providing isoprene to plants that do not normally
make isoprene, (b) using genetic approaches to induce
non-emitting species to make isoprene, (c) using genetic
approaches to suppress isoprene synthesis, or (d ) using an
inhibitor to reduce isoprene emission, all confirm that iso-
prene provides leaves with the ability to tolerate brief high
temperature episodes.

Tolerance of heat flecks can help explain the distribution
of the capacity to emit isoprene among plants. Crop plants
are selected for rapid growth and this requires open stomata.
High stomatal conductance allows high rates of latent heat
loss, buffering against heat flecks. Therefore, crop plants
should not, and generally do not, emit isoprene. Sustained
high temperature presents a type of stress that isoprene
emission may not help plants to tolerate. Plants from hot
deserts do not emit significant amounts of isoprene. On
the other hand, leaves at the tops of trees are subject to
intense sunlight and the light (and associated heat gain)
can vary over very short periods. Trees are generally the
biggest isoprene emitters, especially oak and aspen trees.
In the tropics, plant leaves can grow very large, and this
creates a large boundary layer insulating the leaf from air
temperature, allowing the leaf temperature to exceed air
temperature by 10 8C and more. Also, in humid air, heat
loss by latent heat of evaporation is reduced. The humid
tropics are known to have many isoprene-emitting species
(Sharkey and Yeh, 2001). Thus, there is a correspondence
between the distribution of isoprene emission capacity
among plant species and its presumed function in increas-
ing tolerance of heat flecks suffered by leaves.

Reactive oxygen

A second role for isoprene is in tolerance of ozone and
other reactive oxygen species (ROS). Isoprene can
prevent visible damage caused by ozone exposure (Loreto
and Velikova, 2001; Loreto et al., 2001) and can prevent
measurable loss in photosynthetic capacity by ROS
(Affek and Yakir, 2002; Peñuelas and Llusià, 2002;
Velikova et al., 2004; Peñuelas et al., 2005). However,
there is also a report that isoprene emission can exacerbate
ozone damage (Hewitt et al., 1990). While IspS gene
expression and protein amount are stimulated by high temp-
erature, they are decreased in elevated ozone (Fares et al.,
2006; Calfapietra et al., 2007). Therefore, while isoprene
protects against both ROS and heat flecks, the physiology
of isoprene emission appears related to the protection
against heat flecks. It is unlikely that ozone levels were sig-
nificant over evolutionary time (Jacob, 1999), so it may be
that physiological responses to the ROS protection afforded
by isoprene has not yet had time to evolve. Lerdau has
pointed out that if isoprene emission can increase ozone
production when NOx is present, and simultaneously help
plants tolerate ozone, ecosystem composition could
change as isoprene-emitting species lead to high levels of
ozone that they are better able to tolerate (Lerdau, 2007).

FI G. 3. Thermoprotection of photosynthetic capacity by isoprene.
Photosynthesis of detached kudzu leaves was measured at the indicated
temperatures. One leaf was fed water and so made isoprene from endogen-
ous sources. Two other leaves were fed 4 mM fosmidomycin and isoprene
emission was monitored until .90% of the isoprene emission capacity was
lost. One of these leaves was then provided with 2 mL L21 isoprene in the

air stream (exogenous isoprene treatment).
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Mechanism of isoprene action

The mechanism by which isoprene protects against heat
flecks and ROS is unknown. It is tempting to speculate that
the same mechanism accounts for both effects of isoprene.
Velikova and Loreto (2005) showed that heat flecks caused
leaves to accumulate more H2O2 and malondialdehyde (a
membrane oxidation product) when isoprene emission was
inhibited by fosmidomycin. It is speculated that heat
damage to photosynthesis is mediated by ROS, and isoprene
protects against ROS by protecting both against experimen-
tally induced ROS and heat-induced ROS. Death of yeast
cells by heat shock involves ROS (Davidson et al., 1996).
However, H2O2 accumulation can be a signal for inducing
gene expression that leads to stress tolerance (Kovtun
et al., 2000). It can be difficult to tease apart signals of
heat stress from the damage caused by heat stress.

There are significant effects of heat stress on photosyn-
thesis not easily explained by ROS. For example, heat
flecks cause more damage when given to leaves in the
dark than in the light (Weis, 1982; Schrader et al., 2004).
Heat can cause thylakoid membranes to become leaky
and stimulate cyclic electron flow (Pastenes and Horton,
1996; Bukhov et al., 1999; Schrader et al., 2004). The
cyclic electron flow maintains the proton motive force
needed for ATP synthesis (Schrader et al., 2007). The
loss of membrane integrity could lead to enhanced levels
of malondialdehyde. Thus, it is possible that the mechanism
of action of isoprene is to protect membrane integrity, and
this protects against heat fleck damage and the effects of
ROS. In other words, isoprene could reduce ROS by redu-
cing heat damage directly rather than acting only through
quenching of ROS generated by heating. Lui and Huang
(2002) reported that cytokinin given to heat-stressed
Agrostis palustris (creeping bentgrass) reduced the heat
stress and ROS but it was not suggested that the mechanism
was quenching the ROS. Isoprene may work through one
mechanism that helps leaves tolerate heat and ROS stress
or the two mechanisms may be unrelated.

The only direct study of the mechanism by which
isoprene might function is that of Siwko et al. (2007).
They showed that a moderate amount of isoprene dissolved
in a model membrane caused an increase in membrane
order equivalent to a 10 8C decrease in temperature.
Siwko et al. (2007) conclude that isoprene stabilizes lipid
membranes and that their experiments provide a mechanis-
tic basis for the suitability of isoprene for protection against
heat spike damage. We agree.

Other hypothesized effects of isoprene

At high concentration, isoprene was shown in one study
to speed flowering in arabidopsis (Terry et al., 1995).
Isoprene emission also consumes certain metabolites, and
it has been proposed that this may be the function of
isoprene emission, a ‘safety valve’ to get rid of unwanted
metabolites (Rosenstiel et al., 2004) or energy (Sanadze,
2004). However, in both cases these functions have no pre-
dictive power; they do not explain why some plants do and
some do not emit isoprene. They do not explain why

isoprene emission is greater at the tops of trees than lower
in the canopy. The metabolite ‘safety valve’ hypothesis,
that isoprene emission allows phosphate intermediates that
get ‘stuck’ in the MEP pathway, is a futile cycle; futile
cycles are normally avoided in metabolism. The first
enzyme in the isoprene synthesis pathway is very sensitive
to feedback from metabolites further in the pathway
(Wolfertz et al., 2004) which is the classic regulatory
method of preventing futile cycles in a pathway of this type.
The problem of insufficient phosphate turnover is common
at low temperature but uncommon at high temperature
(Sage and Sharkey, 1987). Therefore, there are mechanisms
to prevent the accumulation of dimethylallyl diphosphate
(DMADP) and the problem would be expected to be worse
at low temperature, when isoprene emission is very low.

It has been hypothesized that isoprene emission can dis-
sipate excess energy when leaves receive more light than
they can use (Magel et al., 2007). However, the well-known
dissipation mechanisms that give rise to energy-dependent
quenching of chlorophyll fluorescence and even photore-
spiration consume many more times the energy consumed
by isoprene emission, making this function for isoprene
emission quantitatively insignificant.

Another hypothesis concerning the role of isoprene emis-
sion is the ‘opportunist hypothesis’ of Owen and Peñuelas
(2005). Clearly, isoprene emission capitalizes on the oppor-
tunity to use DMADP, presented by the fact that this metab-
olite is needed to synthesize many other compounds. The
Km of IspS for DMADP is in the millimolar range while
the Km of geranyl diphosphate synthase for DMADP is in
the micromolar range (Tholl et al., 2001). This difference
effectively separates these two metabolic fates of
DMADP. This rules out the second component of the
opportunist hypothesis as put forward by Owen and
Peñuelas (2005), that longer chain isoprenoids will deter-
mine the rate of isoprene emission. The opportunist hypoth-
esis has been criticized by Pichersky et al. (2006).

REGULATION OF ISOPRENE EMISSION
CAPACITY

Given the importance of isoprene in atmospheric chemistry,
it is essential to understand how plants regulate their iso-
prene emission. Isoprene is synthesized by the action of
IspS on DMADP (Silver and Fall, 1991) produced by the
MEP pathway (Fig. 4) (Schwender et al., 1997).

Isoprene emission is modelled as a base (or basal) rate
corrected for differences between the conditions of the
measurement and the conditions used to determine
the basal rate (normally 30 8C and 1000 mmol m22 s21).
The basal rate was considered to be fairly constant once
leaves were fully developed although species dependent
(Guenther et al., 1993, 1995). The instantaneous response
to temperature was found to be similar among species and
in different environments, but the basal rate has turned
out to vary considerably. It is well known now that the
capacity for isoprene emission is delayed developmentally,
with leaves becoming photosynthetically competent as
much as weeks before isoprene emission begins (Sharkey
and Loreto, 1993; Monson et al., 1994; Goldstein et al.,
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FI G. 4. The methylerythritol 4-phosphate pathway. G3P ¼ glyceraldehyde 3-phosphate; DXS ¼ deoxyxylulose 5-phosphate (DXP) synthase; DXR ¼
DXP reductoisomerase; MEP ¼ methylerythritol 4-phosphate; CMS ¼ diphosphocytidylyl methylerythritol (CDP-ME) synthase; CMK ¼ CDP-ME
kinase; CDP-MEP ¼ CDP-ME 2-phosphate; MCS ¼ methylerythritol 2,4-cyclodiphosphate (ME-cPP) synthase; HDS ¼ hydroxymethylbutenyl
diphosphate (HMBPP) synthase; HDR ¼ HMBPP reductase; IDP ¼ isopentenyl diphosphate; DMADP ¼ dimethylallyl diphosphate; IDI ¼ IDP

isomerase; IspS ¼ isoprene synthase.
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1998; Kuhn et al., 2004; Mayrhofer et al., 2005; Wiberley
et al., 2005). The delay is significantly affected by growth
temperature (Monson et al., 1994; Wiberley et al., 2005).
Even after leaves are fully developed, air temperature of
the previous few hours to weeks affects the base rate of iso-
prene emission (Goldstein et al., 1998; Fuentes and Wang,
1999; Fuentes et al., 1999; Sharkey et al., 1999; Pétron
et al., 2001). Changes in the activity of IspS can be seen
in response to temperature of the previous few days
(Lehning et al., 2001).

Isoprene emission is remarkably resistant to water stress
(Tingey et al., 1981). Water stress that causes nearly com-
plete loss of photosynthetic capacity has only a minor
effect on isoprene emission (Tingey et al., 1981; Sharkey
and Loreto, 1993; Fang et al., 1996; Pegoraro et al.,
2004b; Funk et al., 2005; Monson et al., 2007).
Following re-watering, isoprene emission capacity some-
times exceeds the capacity before the stress (Sharkey and
Loreto, 1993; Brilli et al., 2007). Isoprene synthase activity
is quite robust in response to water stress (Brüggemann and
Schnitzler, 2002a; Brilli et al., 2007). The maintenance of
isoprene emission and stimulation by water stress can be
interpreted as adaptive in light of the thermotolerance
hypothesis, since water stress is likely to lead to more fre-
quent heat stress as latent heat loss is reduced with
reduced water availability.

Isoprene emission is reduced when plants are grown
under elevated ozone and the expression of IspS can be
shown to be reduced (Fares et al., 2006; Calfapietra
et al., 2007). It is not clear why isoprene emission would
be reduced in plants grown in elevated ozone if the adaptive
significance of isoprene emission were quenching ozone.
Evolution may have resulted in isoprene emission as a
mechanism of thermoprotection with the happy conse-
quence that leaves that emit isoprene are also protected
against the very recent stress of ozone.

The control of isoprene emission by temperature, water
stress, and elevated CO2 or ozone will rest with regulation
of IspS and regulation of the supply of DMADP. It was
originally assumed that the mevalonic acid pathway was
the source of substrate (Sharkey et al., 1991; Sanadze,
2004), but it was demonstrated that a newly discovered
pathway for making isoprenoids was the real source
(Zeidler et al., 1997). The MEP pathway supplies plastids
with DMADP (Schwender et al., 2001). There is evidence
for crosstalk between the mevalonic acid pathway in
the cytosol and the MEP pathway in chloroplasts (Laule
et al., 2003; Dudareva et al., 2005) but movement of sub-
strates from the chloroplast to the cytosol has been demon-
strated more often than movement in the other direction.
Plants that lack the first enzyme of the MEP pathway are
not viable (Estévez et al., 2001) and fosmidomycin, the
inhibitor of the second enzyme in the pathway completely
(Sharkey et al., 2001) or nearly completely (Loreto et al.,
2004) eliminates isoprene emission. The elimination of iso-
prene emission by fosmidomycin is not consistent with the
hypothesis of Sanadze (2004) that a second carboxylation
system exists. Therefore, understanding the regulation of
the rate of isoprene emission requires understanding the
regulation of IspS and the MEP pathway. Molecular tools

have become available for dissecting the control of isoprene
emission, and these studies plus other biochemical studies
of isoprene synthesis regulation are discussed below.

Isoprene synthase regulation

Since the initial discovery of IspS, the link between IspS
and isoprene emission has been studied extensively. Several
studies have indicated that extractable IspS activity corre-
lates with isoprene emission (Monson et al., 1992;
Kuzma and Fall, 1993; Schnitzler et al., 1996, 1997,
2005; Lehning et al., 1999; Brüggemann and Schnitzler,
2002a; Mayrhofer et al., 2005). Recent molecular studies
have shown that introduction of an IspS gene into arabidop-
sis is sufficient to cause the plant to emit isoprene (Sharkey
et al., 2005; Loivamäki et al., 2007a; Sasaki et al., 2007).

Thus far, studies of the regulation of IspS have shown
that, during leaf development, the onset of isoprene emis-
sion is controlled by IspS transcription or mRNA turnover
(Mayrhofer et al., 2005; Wiberley et al., 2005). More
recently, the same has been shown in developing Populus
trichocarpa leaves. The study of emissions from developing
and mature leaves is simplified in P. trichocarpa because
young stems flush continuously, so an entire series of
leaves, from just-emerged to weeks past full expansion,
can be studied on one stem. When grown at high tempera-
ture, leaves begin to emit isoprene at least 1 week after
acquisition of photosynthetic competence, and IspS
mRNA and protein begin to accumulate at the same devel-
opmental stage. The same transcriptional regulation is
observed in leaves growing at low temperature, but such
leaves do not begin to emit or accumulate IspS mRNA or
protein until several days later than their high-temperature
counterparts (Fig. 5) (experimental procedures were as
described in Wiberley et al., 2005). This is useful in the cre-
ation of mechanistic models of isoprene emission: the
amount of isoprene that leaves will emit early in their
lives, and how soon they begin to emit, are functions of
the temperature at which they develop.

Isoprene synthase has a high Km for DMADP and in
some cases exhibits sigmoidal kinetics (Sharkey et al.,
2005; Schnitzler et al., 2005). As a result, it is easy for iso-
prene emission to be co-regulated by both the enzyme
amount and the substrate amount. There is no direct evi-
dence for post-translational regulation of the activity of
IspS but no evidence ruling it out either. In some species,
IspS can be found in the soluble fraction and in membrane
fractions and the amount in each fraction can vary
(Wildermuth et al., 1996; Wiberley et al., 2005). The mech-
anisms for this and its possible role in regulating isoprene
emission are not yet known.

MEP pathway regulation

The MEP pathway provides substrate for the synthesis
of numerous terpenoids in addition to isoprene, and has been
implicated in regulation of their synthesis. Deoxyxylulose 5-
phosphate synthase (DXS), DXP reductoisomerase (DXR)
and hydroxymethylbutenyl diphosphate reductase (HDR)
have had regulatory roles suggested in production of
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terpenoids such as carotenoids (Albrecht and Sandmann,
1994; Sun et al., 1998; Lois et al., 2000; Estévez et al.,
2001; Carretero-Paulet et al., 2002, 2006; Guevara-Garcia
et al., 2005; Muñoz-Bertomeu et al., 2006). Some evidence
has linked deoxyxylulose 5-phosphate synthase and isopen-
tenyl diphosphate isomerase to regulation of isoprene emis-
sion as well (Brüggemann and Schnitzler, 2002b; Wolfertz
et al., 2003, 2004). Given these results and observations of
isoprene emission capacities of mature leaves subjected to
temperature changes, the role of the MEP pathway in regu-
lation of isoprene emission bears further investigation.

Molecular regulation. Populus trichocarpa is well suited to
studies of the molecular regulation of isoprene emission:
in addition to producing a continual supply of new leaf
tissue and being easy to propagate, its genome has been
completely sequenced (Tuskan et al., 2006) making it
ideal for molecular studies.

Another advantage of having a sequenced genome avail-
able is the ability to do preliminary in silico studies that may
indicate regulatory factors testable in vitro. For example, the
promoter regions of the MEP pathway genes and IspS
have been analysed to identify potential testable regula-
tory elements. The sequences of these regions (2000
nucleotides upstream of the start codon) were found on the
P. trichocarpa genome website (http://genome.jgi-psf.org/
Poptr1_1/Poptr1_1.home.html) and analysed with PLACE
(Higo et al., 1999) and PlantCARE (Lescot et al., 2002),
which search DNA sequences for transcription factor
binding sites.

Isoprene emission is regulated by heat and exhibits circa-
dian regulation (Wilkinson et al., 2006; Loivamäki et al.,
2007b), so a search of the promoters of MEP pathway
genes for transcription factor binding sites related to these
responses was performed. In Chlamydomonas it has been
found that the promoters of heat-shock genes often
contain heat-responsive elements within about 300 nucleo-
tides of their start codons (von Gromoff et al., 2006); such

genes in arabidopsis and soybean also frequently have a
pair of similar elements repeated at least twice, about 20
nucleotides upstream of their transcription start site, and
the response of these elements may be increased if they
are within 10–30 nucleotides downstream of a CCAAT
box (Gurley and Key, 1991; Haralampidis et al., 2002).
According to PLACE and PlantCARE analyses, the promo-
ters of most of the MEP pathway genes contain at least one
of these elements, but only DXS, methylerythritol
2,4-cyclodiphosphate synthase (MCS) and IspS have two
heat shock-response sites between a CCAAT box and puta-
tive transcription start site. Only diphosphocytidylyl methy-
lerythritol synthase (CMS), isopentenyl diphosphate
isomerase (IDI) and IspS have Chlamydomonas-like
heat-responsive elements within a few hundred nucleotides
of their start codons. Based on these analyses and consistent
with studies described above, IspS is an especially strong
candidate for heat-induced expression.

The promoters of some circadian-regulated genes in
tomato have a ‘CAA(N)4ATC’ motif within about 300
nucleotides of their start codons (Piechulla et al., 2001);
so do poplar DXS, CMS, MCS, HDS and IspS. IspS also
has the CCA1/LHY-binding motif (A)5TCT, which controls
dawn-phased expression (reviewed by Hotta et al., 2007).
A conserved ‘TATTCT’ ten nucleotides upstream of the tran-
scription start site in barley light-responsive genes has been
shown to be important in circadian regulation (Thum et al.,
2001). This sequence is also found in the proper position
in the promoters of poplar DXS, CMS, MCS, HDS, HDR
and IspS. In addition, the poplar DXS promoter contains
a series of repeated GATA boxes with spacing and position
similar to those required for circadian regulation of some
arabidopsis genes (Anderson et al., 1994), and the IspS pro-
moter may, also. These findings are consistent with obser-
vations to date on the circadian regulation of isoprene
emission: isoprene emission and IspS transcript levels
show strong circadian rhythms (Wilkinson et al., 2006;
Loivamäki et al., 2007b), while DXR transcript levels do

FI G. 5. Isoprene emission and photosynthesis rates, and IspS mRNA and protein levels for developing P. trichocarpa leaves. Emission rates were
measured at 30 8C and 1000 mmol m22 s21 light. Experimental methods were similar to those reported in Wiberley et al. (2005) for kudzu.
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not (Mayrhofer et al., 2005). The role of the LHY motif for
the IspS promoter was confirmed by an electrophoretic
mobility shift assay (Loivamäki et al., 2007b). In both of
the cases examined here, DXS and IspS show strong poten-
tial for important regulation. These in silico analyses help
pinpoint genes that may be key in regulation of isoprene
emission under varying conditions, identifying suitable
targets for further in vivo and in vitro work.

Regulation through energetics. The MEP pathway requires a
significant amount of reducing power and ATP, and this
could link regulation of the pathway with photosynthesis.
There usually is no emission of isoprene from leaves in
darkness. Correlations have been found between leaf ATP
content and isoprene emission rate (Loreto and Sharkey,
1993). Models of isoprene emission rate often rely on pre-
dictions of photosynthetic electron transport rates to predict
isoprene emission rate (Niinemets et al., 1999; Martin
et al., 2000; Zimmer et al., 2000).

There are three redox reactions in the MEP pathway.
DXR is known to use NADPH, readily available during
photosynthetic electron transport. In plants, the HDS
enzyme can use electrons transferred directly from the elec-
tron transport chain through ferredoxin (Seemann et al.,
2006) further connecting MEP pathway activity to photo-
synthesis. The HDR reductant has not been identified
(Seemann et al., 2002). One ATP and one CTP are required
in the MEP pathway. The CTP loses two phosphates, and
so, presuming the CTP is regenerated by ATP, the total
ATP cost is three. If isoprene emission is typically 2 % of
photosynthesis on a carbon basis (Sharkey and Yeh,
2001), and there are five carbons per isoprene, the ATP
used in the MEP pathway for isoprene synthesis is 0.4 %
of that being used for carbon fixation; for reducing power,
0.6 % of that used for carbon fixation is used for MEP
pathway reactions. If all of the energy needed to reduce
CO2 to sugars is included in the cost of isoprene the
totals rise to 2.7 % of ATP and 3.4 % of NADPH is required
for isoprene emission at a rate of 2 % of photosynthesis on a
carbon basis, not including photorespiration. While these
amounts of energy use could lead to loss of the capacity
for isoprene emission through evolution if isoprene emis-
sion had no value to the plant, these are trivial amounts
of energy compared with, for example, photorespiration,
where 20–40 % of the total ATP and NADPH usage can
be used (Sharkey, 1988). This is why the suggestion that
one function of isoprene emission is to dissipate unused
energy (Magel et al., 2007) does not hold up under quantita-
tive scrutiny. Because of the very small proportion of energy
used by the MEP pathway under normal conditions, the
control of the MEP pathway by energetics of the chloroplast
is likely to be regulatory rather than by mass action effects.
Thus, competition between carbon fixation and the MEP
pathway for energy is less likely to be a useful predictor of
isoprene emission than is energy status of the chloroplast,
which can be unrelated to electron transport rates. Of
course, when isoprene emission increases to a large pro-
portion of the carbon fixed the energy cost increases.

Regulation by carbon supply. The MEP pathway draws on
the Calvin cycle for carbon. Feeding 13CO2 to leaves

results in a rapid appearance of 13C in isoprene (Sanadze
et al., 1972; Delwiche and Sharkey, 1993; Loreto et al.,
1996; Karl et al., 2002; Affek and Yakir, 2003; Loreto
et al., 2004). Similar results have been obtained using
11CO2 (Funk et al., 2004). One of the puzzling findings
has been that isoprene does not become completely
labelled. In oak and poplar trees it was shown that sugar
arriving in the transpiration stream can contribute carbon
to isoprene (Kreuzwieser et al., 2002). During water
stress, as the availability of carbon in the Calvin cycle
becomes limited, more carbon comes from other sources
(Brilli et al., 2007). However, Delwiche and Sharkey
(1993) pointed out that the first carbon product of photo-
synthesis, phosphoglyceric acid, shows similar incomplete
labelling. Thus, the incomplete labelling may be a general
phenomenon related to the availability of carbon within
the chloroplast and may not have special significance to iso-
prene synthesis. The incomplete labelling need not indicate
a decoupling between plastid carbon metabolism and
isoprene synthesis. It is tempting to assume that the incom-
plete labelling of isoprene reflects the cytosolic source of
pyruvate [through phosphoenolpyruvate (PEP) import into
chloroplasts]. However, this has not been directly demon-
strated, and given incomplete labelling of PGA, the
explanation that incomplete labelling of isoprene is caused
by the pyruvate source in the cytosol should be viewed
with caution.

Isoprene emission capacity is reduced at high CO2

(Rosenstiel et al., 2003; Centritto et al., 2004; Pegoraro
et al., 2004a, b, 2005a; Scholefield et al., 2004). It is not
easy to see an adaptive explanation for this response
based on the thermotolerance hypothesis, since high CO2

should lead to stomatal closure and increased leaf tempera-
ture. Rosenstiel et al. (2003) proposed and presented evi-
dence for a mechanistic explanation. They showed that
PEP carboxylase competed for substrate with isoprene
emission. Inhibiting PEP carboxylase stimulated isoprene
emission (Rosenstiel et al., 2003, 2004). Loreto et al.
(2007) found a positive relationship between dark respir-
ation and isoprene emission. This is inconsistent with mito-
chondrial activity competing with isoprene emission for
PEP during the day, and this could indicate that mitochon-
drial respiration during the day is low or uses substrates
other than pyruvate derived from PEP. In their experiments
there was a negative correlation between isoprene emission
and PEP carboxylase activity, consistent with the hypoth-
esis of competition between PEP carboxylation and
isoprene synthesis (Loreto et al., 2007).

On the other hand, Wolfertz et al. (2004) showed that
isoprene emission was strongly controlled by the activity
of DXS. Aspen grown in elevated CO2 have reduced
amounts of IspS, which partially accounts for a long-term
reduction in isoprene emission capacity (Calfapietra et al.,
2007). This and other data make it clear that there can be
several factors controlling the rate of isoprene emission
simultaneously. This makes modelling isoprene emission
potentially more complex than modelling photosynthesis,
where either Rubisco activity or ribulose bisphosphate
regeneration dominate the control of the rate of photosyn-
thesis at any given instant (Farquhar et al., 1980). The
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effect of elevated CO2 on isoprene emission may provide
some insights into the control of isoprene emission and
has implications for predicting global change effects on
the atmosphere (Monson et al., 2007; Possell et al., 2005).

SYNTHESIS

Isoprene emission from plants is an unseen but highly sig-
nificant component of atmosphere–biosphere interaction.
Because it is possible for plants to survive without signifi-
cant isoprene production and emission, we presume that
those plants that do emit derive some benefit that outweighs
the cost. Thermotolerance has significant explanatory
power and experimental support. Inhibitor studies and
genetic approaches have confirmed that thermotolerance is
provided by isoprene. Isoprene-emitting plants are also pro-
tected against ozone but, given that significant ozone stress
is a recent phenomenon, it may be that this is simply a
happy coincidence. The regulation of the rate of isoprene
emission should reflect the benefits derived from isoprene.
It is not surprising, then, that temperature regulates isoprene
emission at many different levels. Evidence for regulation
at the level of gene transcription has been found but,
more generally, the regulation has been difficult to under-
stand. This is in part because there is a significant amount
of DMADP in leaves in a compartment that is not accessi-
ble to IspS. While isoprene emission is significant at
approx. 2 % of photosynthesis, it is hard to do detailed ana-
lyses of carbon flux regulation on a background activity 50
times greater than the process under study. Molecular tools
are being developed and the use of stable isotopes has led to
significant insights into isoprene emission rate regulation.
Substantial progress is likely in the coming years. We
should be able to answer with increasing depth ‘how and
why plants emit isoprene’.
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Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y,
et al. 2002. PlantCARE, a database of plant cis-acting regulatory
elements and a portal to tools for in silico analysis of promoter
sequences. Nucleic Acids Research 30: 325–327.

Liu X, Huang B. 2002. Cytokinin effects on creeping bentgrass response
to heat stress. II. Leaf senescence and antioxidant metabolism. Crop
Science 42: 466–472.

Logan BA, Monson RK. 1999. Thermotolerance of leaf discs from four
isoprene-emitting species is not enhanced by exposure to exogenous
isoprene. Plant Physiology 120: 821–825.

Lois LM, Rodriguez-Concepción M, Gallego F, Campos N, Boronat A.
2000. Carotenoid biosynthesis during tomato fruit development: regu-
latory role of 1-deoxy-D-xylulose 5-phosphate synthase. The Plant
Journal 22: 503–513.
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Owen SM, Peñuelas J. 2005. Opportunistic emissions of volatile isopre-
noids. Trends in Plant Science 10: 420–426.

Pastenes C, Horton P. 1996. Effect of high temperature on photosynthesis
in beans. 2. CO2 assimilation and metabolite contents. Plant
Physiology 112: 1253–1260.

Pegoraro E, Rey A, Bobich EG, Barron-Gafford G, Grieve KA, Malhi
Y, et al. 2004a. Effect of elevated CO2 concentration and vapour
pressure deficit on isoprene emission from leaves of Populus deltoides
during drought. Functional Plant Biology 31: 1137–1147.

Pegoraro E, Rey A, Greenberg J, Harley P, Grace J, Malhi Y, et al.
2004b. Effect of drought on isoprene emission rates from leaves of
Quercus virginiana Mill. Atmospheric Environment 38: 6149–6156.

Pegoraro E, Abrell L, Van Haren J, Barron-Gafford G, Grieve KA,
Malhi Y, et al. 2005a. The effect of elevated atmospheric CO2 and
drought on sources and sinks of isoprene in a temperate and tropical
rainforest mesocosm. Global Change Biology 11: 1234–1246.

Pegoraro E, Rey A, Barron-Gafford G, Monson R, Malhi Y, Murthy R.
2005b. The interacting effects of elevated atmospheric CO2 concen-
tration, drought and leaf-to-air vapour pressure deficit on ecosystem
isoprene fluxes. Oecologia 146: 120–129.
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Peñuelas J, Llusià J, Asensio D, Munné-Bosch S. 2005. Linking isoprene
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