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This paper presents a method for describing plant architecture using topological and geometric information. This
method is based on the use of a multiscale model of plant topology—called multiscale tree graphs—which is extended
to include geometry. The relationships between both multiscale topology and geometry are explicitly identified and
topology and geometry are shown to contain redundant information. This redundancy is expressed as sets of
constraints between the geometrical parameters of plant components that belong either to one scale or to different
scales. These within- and between-scale constraints are used to reduce the number of measurements when digitizing
plant architecture and to implement the geometrical parameters that are not specified. Different solutions for
simplifying plant architectural descriptions are proposed. The method, implemented in software dedicated to plant
architecture analysis (AMAPmod), does not depend on the plant species or on the geometric model used to describe
the plant components. The multiscale approach allows plant architecture to be represented at different levels of
accuracy. This method is illustrated on two plants, a 3-year-old apple tree and a 20-year-old walnut tree, which
correspond to applications of different sizes and with different goals for the representation.
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INTRODUCTION

Plants are complex structures which can be described in
many different ways depending on the requirements of the
application, e.g. for bio-mechanics, hydraulic architecture
or micrometeorology, or for simulation of plant growth.
There is a general agreement that plants can be regarded as
a collection of components having specific morphological
characteristics, organized at several scales (White, 1979;
Barthe! le!my, 1991). Plant architecture is a term applied to
the organization of plant components in space which can
change with time. At a given time, plant architecture can be
defined by topological and geometric information. Topology
deals with the physical connections between plant com-
ponents, while geometry includes the shape, size, orientation
and spatial location of the components.

Measuring plant architecture allows one to make a bridge
between real and modelling worlds. Indeed, plant archi-
tecture is necessary input data for statistical and functional
models of plants : geometry is mainly involved in plant-
environment exchanges and resource capture, (e.g. light
interception; Ross, 1981) while topology can be used to
build up biological sequences embedded in axes (Costes and
Gue!don, 1997) or can be considered as the seat for internal
fluxes for energy, mass and information (e.g. water trans-
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port ; Dauzat and Rapidel, 1998; Sperry et al., 1998). Plant
architecture can also be the output of plant structure-func-
tion models dealing with the dynamics of growth and de-
velopment (e.g. Takenaka, 1994; Mech and Prusinkiewicz,
1996; deReffye et al., 1997; LeDize' s et al., 1997; Fournier
and Andrieu, 1998).

Several methods have been proposed to measure either
plant topology or geometry. For topological analysis, Godin
and Caraglio (1998) developed a model of plant topological
structure, called a multiscale tree graph (MTG). MTGs are
suitable for representing plant topology with respect to scale
and time. The multiscale nature of MTGs lies in the
decomposition of the plant into larger or smaller com-
ponents. At a given scale, topology expresses succession and
branching relationships between plant components.

For geometric analysis, Sinoquet et al. (1998) proposed a
method based on digital, three-dimensional measurements.
This method was applied to analysis of leaves to derive
attributes of the light microclimate from plant geometry. A
geometric model, i.e. a shape, was associated with each
component: for leaves, the geometric model was a set of
triangles obeying leaf allometry. The geometric model was
then scaled, rotated and translated according to the size,
orientation and spatial location of leaves. Orientation angles
and spatial co-ordinates were measured in three-dimensions
with a digitizing device (Polhemus, 1993).

Recent works have used both topological and geometric
information to describe plant architecture. Hanan and
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Room (1997) proposed a scheme based on a one-scale
description of plant topology coupled with sonic digitizing,
Godin and Costes (1997) proposed, as a first approach, the
inclusion of 3D co-ordinates of entities in MTGs. Sinoquet
et al. (1997a) took a symmetric approach and described a
strategy for augmenting geometric information obtained
from 3D digitizing with topological information. However,
none of these works took advantage of the redundancy
expressed by the combination of topological and geometric
information, except in obvious ways (e.g. the bottom point
of a successor is the same as the top point of its predecessor).
Indeed integrating plant topology and geometry has mostly
consisted of attributing spatial co-ordinates on plant
topology descriptions. The first objective of this paper is to
develop a comprehensive framework to represent plant
architecture combining the MTG approach and 3D
digitizing, to allow explicit identification of the relationships
between both multiscale topology and geometry. Such a
framework has been implemented in AMAPmod, i.e.
software devoted to plant architecture analysis (Godin,
Costes and Caraglio, 1997a). The second objective is to
derive strategies for measurement of plant architecture
using this framework. Special attention is paid to the
possibility of using multiscale information to define simpli-
fied measurement protocols. Application of this framework
to the measurement of a young apple tree and a 20-year-old
walnut tree illustrates the method and emphasizes practical
aspects of measuring plant architecture.

MATERIALS AND METHODS

A framework to integrate topology and geometry

Topological model. The topological model is a multiscale
tree graph (Godin and Caraglio, 1998). This can be
considered as a set of tree graphs which represent a plant at
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F. 1. A, A cone frustum is a basic geometric model with parameter λ¯ (b, t, h), where b and t are the base and top diameters, respectively, and
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different levels of detail. By definition, scale 0 corresponds
to the coarsest level of description. At any scale, s, the MTG
appears as a simple tree graph which represents the set of
plant components at this scale and their topological
relationships. Only two kinds of relationships are used to
describe the botanical nature of the links between plant
components : succession and branching, denoted by
operators! and, respectively. The succession relationship
x! y means that component y was created by the terminal
bud of component x. Similarly the branching relationship
xy means that y developed from an axillary bud of x. The
integration of every tree graph at scale s (s¯ 0, 1,…,S ) in
the MTG is achieved by introducing a decomposition
relationship, denoted by the operator }. If a is a component
from scale s-1, the relationship a}y means that component
y defined at scale s is a component of a. Component a is
called the complex of y. A detailed, yet simple, example of
an MTG is depicted in Godin et al. (1997a).

Geometric model of a component. The geometry of a plant
component refers to both its shape and its position in space.
In an MTG, it can be defined in two different ways: (1) by
a basic geometricmodel, i.e. a parametricmodel representing
its external surface. Cone frustums, for example, are used as
a basic geometric model to represent the shape of various
types of plant components (e.g. deReffye et al., 1988;
Prusinkiewicz and Lindenmayer, 1990; Weber and Penn,
1995) and are defined by a parametric model with
multivariate parameter λ¯ (b, t, h), where b is the bottom
diameter, t the top diameter and h the height (Fig. 1A). Due
to the widespread use of cone, this basic geometric model is
used in the following sections for illustration. Each plant
component has a specific position in space with respect to a
global co-ordinate system. The position of a basic geometric
model refers to its location and orientation with respect to
this global co-ordinate system. For a cone frustum, the
position is defined by the co-ordinates of the centres of
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F. 2. Between scale constraints associated with multiscale representation of plant components. A, Multiscale graph representing a branching
system at two scales, s

"
and s

#
. Ovals represent plant components and arrows represent structural links between components. The dashed lines

express the ‘part of ’ relationship between component at different scales. B, Basic geometric model associated with the macroscopic component
a representing the whole branching system at scale s

"
. C, Compound geometric model representing the same branching system at finer scale s

#
.

bottom and top sections (B and T ), or by B and the axial
direction ka (Fig. 1B). A geometric model for which some of
its parameters or its position are unknown is called under-
specified. (2) By a compound geometric model. The
definition of a component’s geometry can make use of the
nested nature of the components of an MTG at different
scales. Consider a plant component a at scale s

"
which is

decomposed into components y
i
(i¯ 1,…,N ) at scale s

#
(s

#
" s

"
). If the geometric models of components y

i
are known,

the shape of component a can be defined as the combination
of its component geometric models. The geometry of the

macroscopic component a is thus represented by a com-
pound geometric model. The geometric models associated
with components y

i
(i¯ 1,…,N ) may themselves be either

basic or compound.
Constraints induced by topology. Constraints induced by

the topological arrangement of components on their
geometric models at a given scale define within-scale
constraints. They express redundancy between the infor-
mation associated with the description of topology and
geometry. In the case of cone frustums, if a component x
precedes a component y (x! y), this implies that the bottom
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of y,B
y
, coincides with the top of x,T

x
, and the continuity of

diameters can be assumed between predecessor and suc-
cessor :
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Similarly, if a component y is borne by a component x
(xy), the reference point of y is necessarily located
somewhere within the volume delimited by the geometric
model of x :
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Equations (1) and (2), respectively, illustrate a case of
equality between geometric parameters and a case where
geometric parameters must be within a certain range of
values.

Constraints induced by decomposition. Between-scale
constraints express a redundancy in the information
contained in the geometric descriptions of components at
different scales. As previously mentioned, the geometry of a
plant component a at scale s

"
which is decomposed into

components y
i
(i¯ 1,…,N) at scale s
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) can be

represented either by a basic or compound geometric model.
Since the two representations are both geometric inter-
pretations of the same component a, they must respect some
consistency conditions, specified by between-scale con-
straints which are relationships that link the parameters of
both geometric representations. In case of the branching
system depicted in Fig. 2:
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Approximation of plant component geometry. The re-
dundancy expressed by the within- and between-scale
constraints can be used in two ways. If all the geometric
parameters are known, the equations can be used to check
the consistency of the corresponding geometric models.
Alternatively, the equations can be used to compute the
unknown parameters from those of other components.

Using within-scale constraints. For components at a given
scale, the within-scale constraints can be used to compute
part of the geometric parameters from those of the
neighbouring components. Equation (1) for instance, can be
used to compute the bottom points (B) and base diameters
(b) of all the components of an axis (except for the first),
provided the co-ordinates of the tips (T ) and the top
diameters (t) are known. This property is frequently used to
simplify axis digitizing schemes (see below).

If the first component of an axis is connected to a bearing
component, it is also possible to use within-scale constraints
to infer its bottom point and diameter. However, the within-
scale constraints expressed by eqn (2) need to be modified to
compute the exact value of the bottom point since they
specify membership to a domain of values. A good rule of
thumb is to take the top point of the bearing component (u
in the following) as a conventional insertion point and to

make the approximation that the component borne on it is
a cylinder. In this case, the insertion point and the diameter
of component z can be computed using the following
modified constraints :
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The maximum error made with such a systematic choice
is bounded by the length of the bearing component. If the
bearing component is an internode, its top corresponds to
the insertion node of the axillary axis and the rule gives the
exact insertion of the axillary axis. If u is at the same scale
as z, eqn (4) defines new within-scale constraints. However,
the bearing component u need not be at the same scale as z.
The co-ordinates of the insertion point of each axis can be
approximated for instance as the top co-ordinates of the
finest component identified on the bearing axis (for example,
z could be a growth unit and u an internode).

Using between-scale constraints. For components at
different scales, two types of inference can be carried out
depending on whether the geometry is scaled up or down.
Scaling up the geometry applies to plant components a (at
scale s

"
) whose basic geometric model is under-specified and

whose components y
i
(i¯ 1,…,N ) (at scale s

#
, s

#
" s

"
) are

associated with fully specified geometric models. In this
case, between scale constraints apply and allow us to
compute all of the parameters of a’s basic geometric model.
Conversely, scaling down the geometry applies to plant
components y

i
(at scale s

#
) whose complex a (at scale s

"
, s

#

" s
"
) is associated with an entirely specified geometric

model. The geometric model of a is not, in general, sufficient
to determine the geometry of its components. If under-
specified basic geometric models are defined for each
component y

i
, it is possible to determine some of the missing

geometric parameters at the highest scale (s
#
) from those at

the lowest scale (s
"
), using between-scale and within-scale

constraints. However, most of the parameters at the greater
scale s

#
are left unspecified. Additional within or between-

scale constraints have to be defined to infer the missing
geometric data.

Scaling down axis component geometry. Let us consider an
axis a whose geometry is represented by a basic geometric
model (as in Fig. 2B), but the geometry of its components
y
"
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,…, y

N
is not specified. To approximate the geometry

of the n components, the simplest assumption is that the
component geometric models are pieces of the coarse geo-
metric model. The geometry of each y
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F. 3. Approximation strategies for digitizing a monopodial branching system. A, A monopodial branching system. Two axes have been
decomposed into sub-components (e.g. internode units). B and C, Precise modelling of the branching system geometry would require recording
all the 3D points (denoted by C). D, Digitized points not corresponding to branching points have not been recorded (X). E, Only the extremities

of the branching system axes have been recorded. F, Only the extremities of the two major axes have been recorded.

This equation corresponds to new between-scale con-
straints deriving from the above additional geometric
assumptions. They express, respectively, the co-linearity of
the axis segments, the homogeneity of the length of the
components and the linear decrease of the top diameter. For
each i" 1, the other geometric parameters, B

y
i

, b
y
i

, are
determined using the within-scale constraints due to
topological connections [eqn (1)]. B

y
"

and b
y
"

are determined
according to the between-scale constraints from eqn (3).

If the considered axis is a sympodial branch, i.e. a branch
made up of a series y

"
, y

#
,…, y

N
of modules (Bell, 1991),

then the previous strategy still applies using the same
additional geometric eqn (5). However, within a sympodial
branch, the within-scale constraints expressed in eqn (1)
needed to be extended to successive modules, i.e. related by
the  operator.

Scaling down branching system component geometry. These
simple schemes for approximating axis geometry and
location can be extended to approximate the geometry of
any branching structure. To represent a branching system
(containing either monopodial or sympodial branches), we
may approximate its bearing axis geometry by some basic
geometric model and scale down its component geometry
using additional between-scale constraints as described

above. This provides an estimation of the insertion points of
its axillary branches [e.g. using eqn (4)]. Then, an ap-
proximation of the axillary branches can be carried out
recursively. The direction of the second order axes is
determined from the spatial co-ordinates of their extremities.
Similarly, the geometry of their components can be
estimated.

Measurement of plant architecture

Topological recording. Most scales currently used in
topological descriptions are based on botanical principles
which allow us to make hypotheses concerning plant growth
dynamics, the stage of differentiation of axes, and reiteration
processes. The scales are based on plant decompositions
into either metamers, growth units, annual shoots, axes,
branching systems or plants. At any given scale, different
morphological types of components and different types of
topological connections can be defined.

Once suitable decompositions have been defined, the
plant components must be described in a certain order. A
‘depth first order’ is often convenient, i.e. components are
described from the base to the top of the plant and each
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axillary branch is entirely described before resuming
description of the bearer. The components of a component
are described immediately after the component has been
identified. This strategy ensures that no components are
forgotten (Godin et al., 1997a).

Digitizing strategy. In order to represent plant geometry,
each component must be associated with a geometric model,
either basic or compound, which has to be estimated from
field measurements. However, in actual digitizing appli-
cations, geometric information is not necessarily collected at
scale s for all components. Depending on the desired
accuracy for a given part of the plant, geometry may be
measured locally at scales that are different from s. Where
greater accuracy is required, components at scale s may be
decomposed into finer components. The geometry of
components at scale s is thus represented by compound
geometric models. On the contrary, where limited accuracy
is required, it is possible to measure more macroscopic
components at a scale less than s, and then scale down to
infer geometric information at scale s.

For a branching system, different approximation
strategies can be used to obtain a satisfactory balance
between the number of measurements and geometric
accuracy. Figure 3 illustrates these approximation strategies
for representing the geometry of a monopodial branching
system at the internode scale (Fig. 3A). Since it might be
unrealistic to digitize every internode, a first approximation
strategy can be used. Points are sampled on the plant
structure so that segments between any consecutive two
points are straight (Fig. 3B and C). Internode geometric
parameters that were not measured can then be scaled down
from the geometry of these straight segments using eqn (5)
(whereas a is now a segment) (Fig. 3B).

Figure 3D shows a second level of simplification: points
that are not branching points or axis terminal points have
been discarded from the sampling strategy. The axis
segments between consecutive digitized points are assumed
to be straight segments whose geometry can be used to scale
down the geometry of their internodes. By contrast with the
previous digitizing scheme, the total number of points in this
example has been reduced by half.

Figure 3E shows a third level of simplification where
branching points have also been removed from the set of
digitized points. In this case, the direction of the axis bearing
the whole branching system is determined by digitizing its
endpoints. If this axis geometry is assumed to be a straight
segment, its component geometry can be determined by
scaling down. From the topological information contained
in the MTG, we know which of these components are
bearing second order branches. Then, recursively, the
direction of the second order branches are determined from
the previous estimates of their insertion points and their
digitized extremities. In turn, the location and geometry of
their components can be estimated by scaling down, etc.

This scheme can be further simplified when the overall
geometry of a branching system can be approximated by the
geometry of its principal axes (Fig. 3F). As in the previous
scheme, the geometry of the principal axes is determined by
a recursive scaling down. Since no points have been digitized
on the other axillary branches, their global direction is

unknown. Hence, the geometry of these axillary branches
can only be approximated using default rules and values.
For example, the length of such an axillary branch can be
approximated by a mean component length multiplied by
its number of components, the insertion angles can have a
constant value, etc. (Fig. 3F).

Figure 4 illustrates a similar approximation strategy for a
sympodial branching system (Fig. 4A). This branching
system can be approximated as discussed above by digitizing
the extremity of each module (Fig. 4B). However, it is not
possible to further simplify this digitizing scheme as in
the monopodial case. Indeed, if intermediate points at the
extremities of the modules are not recorded (points 2, 3, 5),
the first bearing module (axis 1–2) has no defined extremity
since point 2 is not recorded. Hence, its geometry must be
approximated using default rules (that define its overall
direction and the mean length of its components) as well as
the geometry of axes 2–3 and 2–5, leading to a wrong
geometric interpretation (Fig. 4C).

To further simplify the digitizing of this sympodial
branching system, it is necessary to take into account the
multiscale topological information that describes how
modules are grouped into sympodial branches (Fig. 4D).
Digitizing points 1 and 4 determines the basic geometric
model that represents sympodial branch a

"
. It is then

possible to scale down the geometry of a
"
components using

eqn (5) (Fig. 4E). For the same digitized points (i.e. 1, 4,
6), a different multiscale topological description (Fig. 4F)
would lead to a different geometric representation of the
branching structure at the internode scale (Fig. 4G).

All these strategies may be applied to simplify measure-
ments of both moderate-size plants—in which the detailed
geometry of small branching systems is unnecessary and
expensive to measure—and large trees which contain so
many components that not all could be described geo-
metrically. The resulting digitizing method is flexible : it
allows several levels of geometric simplification and it does
not depend on a predetermined scale of description.

Recording spatial co-ordinates. In the following appli-
cations spatial co-ordinates were measured with an elec-
tromagnetic 3D digitizer Fastrak (Polhemus, 1993). The
digitizer includes a pointer (i.e. which shows the point to be
measured) and gives the spatial co-ordinates and orientation
angles which are simultaneously recorded (Raab et al.,
1979). In the field, the error in measuring spatial co-
ordinates is about 1 cm, because of plant movements due to
the wind and operator error (Thanisawanyangkura et al.,
1997). Additional error can be expected in the presence of
metallic objects which disturb the magnetic field. Further
information about the 3D digitizing technique may be
found in Moulia and Sinoquet (1993) and Sinoquet et al.
(1998).

Spatial co-ordinates measured on the plants were the tips
of the plant components abstracted by cylinders or cone
frustums. The pointer was held parallel to the component
surface, so that the pointer’s normal direction intersected
the central axis of the component. This made it possible to
compute the spatial co-ordinates of the central axis from
pointer co-ordinates, pointer orientation angles and the
component diameter t

z
. The latter was measured with a
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F. 4. Approximating the geometry of a sympodial branching system. A, Six points are digitized corresponding to the base and to the extremity
of each axis. B, A reconstitution using linear interpolation between digitized points. C, Resulting geometric model if points 2–4 are not digitized:
only the branching system extremities have been considered. D, Multiscale topological information is added so that a better approximation can

be made. Alternative multiscale topological information (F) could result in a relatively biased geometric reconstruction (G).

calliper at the same time as digitizing. The digitizer was not
used to measure the diameter because of measurement
error.

Data encoding and analysis. Code files. Plant descriptions
are encoded in a textual form, using a specific code for

topology in which each component is represented by a label
and its topological relations by specific symbols (Godin et
al., 1997a). Each label is made up of a letter and an index.
The letter represents the component class, i.e. the type of
component. The index is an integer that locally allows us to
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identify the component among its immediate neighbours
(e.g. the rank or the year of growth of the corresponding
component). The index meaning is necessarily the same for
all the components of a given class. The information relative
to the scales, classes and topological relations allowed
between components is summarized in the header of a code
file which is input in a spreadsheet-like format. All the
measurements that can be carried out on plant components
as well as spatial co-ordinates are attributed to plant
components, at a given scale. The multiscale description can
be used to attribute the variables at adequate scales.

Reconstruction of plant architecture. These code files can
then be read by the AMAPmod software (Godin et al.
1997a, b). Data exploration and analysis is then performed
interactively, using theAMAPmod Language (AML), which
allows computation on topological locations, multiple-
criteria selections of plant components, and graphical and
statistical analysis of the results—including fitting of
statistical models. A specialized module has been designed
to reconstruct the geometry of a plant from the measured
spatial co-ordinates according to the principles described in
previous sections, i.e. fully or under-specified geometric
models and making use of within- and between-scale
constraints.

Analysis of plant architecture. Using AMAPmod software
allows one to define a posteriori different types of variables
from the data contained in the plant architecture database,
since the plant architecture was preserved by the measure-
ment process. Topological, geometric or biological variables
corresponding to measured values, called raw variables, can
then be extracted from the database. From these raw
variables, new variables, called synthesized variables, can
be constructed in AML using variables associated with
components at the same scale or at other scales. The
extracted data can be plotted in different ways and further
investigated using AMAPmod modelling tools (Godin et
al., 1997b).

RESULTS

Digitizing of a young apple tree

The method was applied to study development of fruit
quality in apple trees (Malus x domestica Borkh), by
comparison of two cultivars trained in two different systems.
Both the topological and geometric location of fruits within
the canopy were assumed to be key factors for fruit quality.
Topological location in relation to surrounding vegetative
components was assumed to be important for two main
physiological functions: (1) assimilate supply or competition
for sugars between organs; and (2) water flow related to
transpiration of leaves.

Cultivars ‘Fuji ’ and ‘Braeburn’ were planted at the
INRA Laboratoire d’Arboriculture experimental station,
near Montpellier (France) in 1995, after 1 year’s growth
in a nursery. A block of 20 trees was trained in each system.
The first training system relied mainly on systematic bending
of the laterals during summer and of the central axis when
it reached 3 m in height. In the second training system, the
laterals were left to develop even in an erected position and
bending occurred in a natural way with fruiting. Two trees

T 1. Topological relationships between classes used to
describe apple tree architecture

Scale Classes } ! 

1 J R,W,S
1 N R,W,S
2 R U,B,D,I R,W,S
2 W B,D.I W,S
2 S D,I S
3 I E D,B,U
3 D E I,D,B,U I,D,B,U
3 B E I,D,B,U I,D,B,U
3 U E I,D,B,U I,D,B,U
4 E E E,F
4 F

Each line represents a type of plant component and specifies its scale,
the possible types of its components (column }) and the type of
component that can follow it (column!) or be borne by it (column)
at the same scale. See text for details.

from each system (i.e. eight trees in total) were chosen for
the following descriptions.

Topological description. Four scales were used to describe
plant topology (Table 1). At plant scale 1, two classes of
components were used to distinguish the two cultivars (J for
‘Fuji ’ and N for ‘Braeburn’) and the index represented the
rank of the tree on the row. At branch scale 2, three classes
were considered: R for branches (i.e. contain at least one
long growth unit), W for brindles and S for spurs. At scale
3, four classes of growth units (GUs) were considered
according to their floral or vegetative character and their
length: I for inflorescences ; D for GU less than 5 cm; B for
GU from 5 to 20 cm; and U for GU more than 20 cm. GU
indexes represent their year of growth (from 1994, year of
growth in the nursery, to 1997, year of digitizing). For
example, U94 denotes a growth unit grown in 1994 (Table
2). At metamer scale 4, we measured those metamers whose
leaf (E) was sufficiently developed to make a photosynthetic
contribution, and did not measure metamers whose leaf was
reduced. The index in this case indicated the rank of the
metamer within the GU. Fruits (F) were considered as
components from scale 4, like metamers. They were indexed
after thinning so that each fruit could be identified up to
harvest.

Since inflorescences in apple trees are terminal on the
axes and are followed by a sympodial and immediate
branching (Crabbe! and Alvarez, 1991) no succession
relationship was allowed after an I symbol. The other GUs,
i.e. D, B, and U were allowed to follow and to bear each
other. At scale 4, metamers followed each other and could
be followed by fruits if they were components of an I (F, like
I, does not have a successor).

Description method. Each tree was digitized in spring and
autumn to quantify changes in 3D co-ordinates during the
growth and fruiting period. We precisely located shoots and
fruits by describing their insertion at node level. This was
possible since the trees were sufficiently young (4-year-old)
and morphological marks were still visible. Nevertheless, it
was necessary to compromise between the time devoted to
recording �s. the precision, since leaves and spurs (short
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T 2. Code representing the digitized branch

ENTITY-
CODE

XX YY ZZ TopDia Blush

}J1
g}R1}U94 0 0 0 375
g}E1!!E35
g!E39 2±1 1±3 90±3 307

R1}D94}E1 179
! 195}E1 ®2±1 1 94±3 179
gU95
g}E1!!E15 ®18 ®4±2 103±7 147
g!E16!!E22

S1}196}E1D96}E1!!E6 ®26±4 ®6±7 104±4 50
g!E23!E24

S1}196}E1D96}E1!!E4 ®31±9 ®5±5 105±1 46
g!E25 ®32±8 ®6±6 103±6 144

S1}196}E1D96}E1!!E4 ®33±8 ®6±4 103±8 57
g!E26

S1}196}E1D96}E1 ®34±5 ®4±3 102±6 36
g!E27

S1}196}E1D96}E1!E2 ®37±3 ®5±1 104 53
g!E28

S1}196}E1D96}E1!!E3 ®37±6 ®4±8 101±2 50
g!E29

S1}196}E1D96}E1!!E4 ®39 ®3±9 102±7 50
g!E30 ®41±1 ®6±2 102±2 136

S1}196}E1 ®41±4 ®6±1 102±7 62
S1}D96}E1 ®42±5 ®6±2 102±8 35

g!E2 ®42±5 ®6±2 102±8 35
D96}E1!!E6 ®41±7 ®11±5 103±1 62

g!E31
S1}196}E1D96}E1!!E4 ®42±4 ®4±4 100±3 43

g!E32
S1}196}E1 ®44±9 ®4±8 102±1 43

S1}D96}E1 ®45±8 ®4±2 103±4 40
g!E2 ®46±1 ®4±4 103±2 43

D96}E1!E2 ®48±2 ®4±4 104±8 43
g!E33

S1}196}E1 ®47±2 ®5±3 100 45
D96}E1!!E5

g!F1 0±75
g!E34

S1}196}E1D96}E1!!E4 ®51±3 ®3±3 100±4 47
g!E35 ®51±8 ®4±8 101±1 136

R1}196}E1 ®52±1 ®4±1 101±8 82
U96
g}E1!!E5 ®55±5 ®9 104±3 82
g!E6!!E10 ®60±1 ®16 109±7 82
g!E11!!E15 ®64±5 ®23 116±6 82
g!E16!!E20 ®68±6 ®28±7 125 82
g!E21!!E25 ®70±9 ®30±7 132±7 82

The first 5 columns contain topological codes (one column per order). One column may contain more than one component. The notation E1
!!E5 is a shorthand for E1!E2!E3!E4!E5. Columns 6 to 10 are used to attach attributes to the last component defined on a line: columns
XX, YY, ZZ contain the x, y, z co-ordinates of the tip of this component, TopDia contains its top diameter and Blush contains the percentage
of blush of a fruit. See Godin et al. (1997) for more details about the coding strategy.

axillary shoots) were very numerous. Considering that it
would be unrealistic to digitize each leaf, and too coarse to
digitize at the GU scale, not all the geometric information
was recorded at the leaf scale. Long shoots were decomposed
into straight segments containing at most five internodes
(Fig. 5). Then, to represent the plant at the scale of
internodes, the geometry of each internode was scaled down
from these segments.

A particular strategy was applied to sample short laterals.
When less than 5 cm long, they were not decomposed into

internodes and the 3D co-ordinates were only recorded at
their extremities. Five centimetres was chosen as the
threshold because this length is often used to distinguish the
presence}absence of elongation on twigs and because the
distance between two successive points needs to be greater
than the expected digitizer precision (which is 1 cm). When
these short laterals contain a floral GU, the branching
system is sympodial (Fig. 5A). Approximation strategies
described above were used to reconstruct these branching
systems.
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F. 5. Part of a fruiting branch described in Table 2 showing the digitized points. A, How a short branching system is simplified in the digitizing
process.

‘Fuji ’ trees were described in 1 d by two workers while
2 d were necessary to describe each ‘Braeburn’ tree, since
these had more branches. Finally, 24 worker-days were used
in the field to digitize eight trees. An excerpt of the code file
resulting from the description of the part of the tree
represented in Fig. 5 is given in Table 2.

Using the apple tree database. Figure 6 shows a visual
comparison of a photograph of the real apple tree with the
3D geometric reconstruction from digitized measurements,
which indicates the method precision. The axes are not
perfectly smoothed on the 3D reconstruction, but the
general geometric aspect of the plant is reasonably accurate.
The effect of the presence of a metallic wire in the
neighbourhood of a digitized point can be observed on the
trunk immediately above the first branches. Branch move-
ments due to wind explains the sudden changes of direction
at the end of some lateral branches.

Figure 7 gives a polygonal representation of the geometric
model associated with the branch whose code is described in
Table 2. Because of the approximation schemes, a branch
containing approx. 200 components may be digitized with

only 28 clicks of the digitizer (detailed in Fig. 5). The
method was used to analyse the development of this branch
through time. To do this, the branch was digitized at the
beginning of the vegetative period and then at the end. It
should be noted that in such applications, the integration of
topology and geometry is absolutely necessary since, as the
geometry of the components changes, topology is the only
means to identify components through time. Figure 8
illustrates the bending of the same branch under the weight
of its fruits. Such data can be used, for example, to quantify
the relative change in spatial position of the different branch
components. These changes influence the location of re-
growth during 1997, the spatial location of the fruits and
their light environment. A study of the balance between
growth and fruiting within the canopy was reported by
Costes et al. (1999).

Digitizing of a 20-year-old walnut tree

This application was aimed primarily at providing input
parameters for simulation models to compute the dis-
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F. 6. Visual comparison of the original plant and its 3D geometric reconstruction.

tribution of light interception, transpiration and photo-
synthesis in the tree crown, i.e. at the scale of the current-
year shoot. A secondary purpose was to identify the
determinants of current-year shoot morphology, mainly
shoot vigour as expressed by basal shoot diameter. For this,
parameters of shoot morphology, shoot location in both the
tree topology and geometry, and shoot environment were
correlated.

Measurements were made on a walnut tree (Juglans regia
L.) grown for timber in an orchard located near Clermont-
Ferrand (45° N, 2° E), France. Trees were planted staggered
at a density of 100 plants ha−". All were 20-year-old and
about 7±5 m high. The measured tree was 7±9 m high. Crown
radius and height were 5±5 and 5 m, respectively. The
estimated crown volume was approximately 95 m$.

Description method. The strategy for describing the
architecture was based on the following: the tree was
sufficiently large to include many components (6837 leaves
attached to 1729 current-year shoots), and the tree was
sufficiently old so that most leaf and bud scars were
indistinct. These two features prevented tree architecture
from being measured at the internode or the growth unit
scale.

The primary purpose of this application was to accurately
describe the spatial distribution of foliage within the tree

canopy as this was the main determinant of the distribution
of light, and consequently transpiration and photosynthesis
within the crown. This meant defining leafy shoots, i.e.
current-year shoots, as tree components and measuring
their spatial location within the crown. Topological
positions of current-year shoots also had to be taken into
account since photosynthesis and transpiration rates at the
interface between the plant and the atmosphere were to be
coupled to fluxes within the plant, i.e. assimilate partitioning
and water transport in the hydraulic architecture, re-
spectively. Topology therefore was described to account for
transport and storage capacity of the tree components that
connect each pair of current-year shoots.

For the secondary purpose of this application, current-
year shoots had to be defined as tree components since we
were assessing their variability. Only the topological location
of current-year shoots was required to identify the hi-
erarchical position of the shoot (e.g. terminal shoot �s.
axillary shoot) or to compute the path length from collar to
the shoot. Additional information concerning the topology
of units grown during previous years was unnecessary.
By contrast, the spatial location of the shoot had to be
accurately described to simulate its environmental proper-
ties, especially light microclimate. For both purposes, the
branching points of the shoots on the tree structure had
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F. 7. Geometric reconstruction of the branching system described in
Table 2, performed at the internode scale with AMAPmod.

to be identified and every branching point in the tree had to
be measured in order to accurately compute topological
distances between shoots or the path length from any shoot
to the collar.

Given the above constraints, the tree was topologically
described at two scales (Table 3). At scale 1, the tree was
split into axes A. The axis of order 1 was the trunk, axes of
order 2 were the branches connected to the trunk, and so on.
At scale 2, axes were split into segments S and current-year
growth units U. Segments accounted for the woody
structures set during the previous years, i.e. leafless parts.
Any number of segments might be used to render branch
curvature and changes in diameter, but a segment limit must
be defined at every branching point. Segments were thus
used to accurately describe the geometry of the woody
structure but they did not have any botanical significance.
Leafy shoots, i.e. set during the current-year, were described
as one growth unit, or several in cases of polycyclism or
sylleptic growth. Topological relationships between tree
components are shown in Table 3. The combination S!U
means that U is a terminal shoot while the combination
SU means that U is an axillary shoot. The combinations
U!U and UU account for polycyclism and sylleptic
growth, respectively.

In addition to the spatial co-ordinates, measured
attributes of the tree components included the basal diameter
of axes and growth units and the top diameter of the

segments. All diameters were measured using a Vernier
calliper at the same time as digitizing. The number of leaves
on the growth units was also recorded to provide a bulk
description of shoot morphology: this prevented us from
decomposing growth units into internodes. As in the apple
tree case, all this information was recorded in a code file.

Using the walnut tree database. The walnut tree database
illustrates aspects of the use of the variables extracted from
digitized plant architecture. Figure 9A shows the spatial
distribution of the current-year shoots located in a 1 m thick
vertical plane orientated south-north and centred on the
tree trunk. Small shoots (i.e. with diameter less than
5 mm) tended to be located in the lower part of the tree
canopy, whereas large shoots (i.e. with diameter greater
than 10 mm) were only located in the very outer canopy.
Basal diameter was used to estimate leaf area of current-
year shoots from an allometric relationship established
from a sample of shoots. This allowed us to assess the
spatial distribution of leaf area in the crown volume (Fig.
10). This information was thus derived from two in-
dependent geometric variables, namely shoot diameter and
spatial co-ordinates. According to the first purpose of the
application to walnut, the spatial distribution of leaf area
was then used as an input parameter of a simulation model
computing light interception at the current-year shoot scale
(Sinoquet et al., 1997b). Simulated daily irradiance for an
overcast sky (i.e. for which the ratio of diffuse to global
radiation equals 1) was finally included in the database as an
attribute of current-year shoots. Figure 9B shows the
spatial distribution of current-year shoot irradiance in the
same 1 m thick vertical plane as in Fig. 9A. Shoots receiving
low irradiance (! 20%) were mostly found in the inner
canopy. In the periphery of the crown, shoot irradiance was
higher, although dense foliage at the top of the crown
reduced the irradiance on most shoots (i.e. ! 40%). For the
second purpose of the application to walnut, an attempt to
identify the determinants of shoot morphology was made
from a correlation analysis between basal diameter and
other shoot variables : the best correlation was then found
for shoot irradiance and bearing diameter while other
topological variables did not show any correlation with
shoot diameter (Sinoquet et al., 1997b). This walnut tree
application illustrates how information can be extracted
from the database to determine input parameters for
simulation models (here, a light interception model) of plant
function, and how information on plant architecture can be
used together with additional information on plant comp-
onents (in this case, morphological and environmental
attributes of the growth units).

DISCUSSION

This paper presents a method for describing plant archi-
tecture, including topological and geometric information at
several scales. The multiscale representation of topology is
a crucial choice in three basic respects. First, the method
relies on a very general model of plant topological structure
which guarantees its applicability to a wide range of plant
species, application goals and modelling contexts. Second, it
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A

B

F. 8. Branch digitized at the beginning (A) and end (B) of the vegetative period. GUs created during years 95, 96 and 97 are respectively green,
red and blue.

A B

F. 9. A, Distribution of shoot (measured) diameters in the digitized walnut-tree. The following colour codes have been used: blue, diameters
! 5 mm; light blue, 5–7±5 mm; green, 7±5–10 mm; yellow, 10–12±5 mm; red, " 12±5 mm. B, Distribution of (simulated) shoot irradiance above

the tree on a horizontal plane. Colour codes used for shoot irradiance: blue, ! 20%; green, 20–40%; yellow, 40–60%; red, 60–80%.
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T 3. Topological relationships between classes used to
describe walnut tree architecture

Scale Classes } ! 

1 A S,U A
2 S S,U S,U
2 U U U

See Table 1 for details.
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F. 10. Spatial distribution of leaf area density (DSF, m#m−$) in a 1 m
thick vertical plane oriented north-south and centred on the tree trunk.

enables us to design approximation schemes to simplify
measurements that do not depend on a specific scale. These
schemes simplify the geometry of branching systems to
varying degrees and can be used to simplify the geometry of
small as well as large plants. This is particularly useful in
adapting the sampling strategy for different applications.
Finally, the integration of multiscale topology and geometry
defines a new framework to deal with the changing nature of
plant geometry with respect to scales and application goals.
This framework may be used in other applications, e.g.
simulation of plant growth.

To represent plant components, cone frustums were the
basic geometric model. Nevertheless, the complexity of the
surface shape to be modelled can, in some cases, justify
more complex basic geometric models. For example, if an
axis (or a portion of axis) is not straight, its overall geometry
can be modelled by an adequate basic geometric model,
such as a spline (e.g. Bloomenthal, 1985). Many other types
of surface, such as ellipsoids, (e.g. Norman and Welles,
1983; Cescatti, 1997), polygonal envelopes (Cluzeau,
Dupouey and Courbaud, 1995) for trees, or kiwi vines
(Buwalda, Curtis and Smith, 1993), or more complex
parametric models (e.g. Pre! vot, Aries and Monestiez, 1991)

for maize leaves, were used to represent basic geometric
models of plant components. The digitizing method de-
scribed does not depend on the choice of a given basic
geometric model. It can be tuned to account for other
geometric models by changing within- and between-scale
constraints.

The proposed description method, however, shows some
limitation in its application. Data acquisition in the field is
tedious. Indeed, given the current technology, neither
topology recording nor spatial co-ordinate measurements
can be automated. Even if automated plant digitizing is
presently impossible, the proposed method is being
improved by developing software for the simultaneous
acquisition of multiscale topological and geometric infor-
mation. For instance, Room, Maillette and Hanan (1994)
suggested the use of voice recognition for automated code
acquisition so that digitizing could be carried out by one
person working alone dictating into a microphone. Such
software would considerably ease the detection of in-
consistent measures and the practical construction of plant
architecture databases.
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