

A Fossil Wood Flora from King George Island: Ecological Implications for an Antarctic Eocene Vegetation

IMOGEN POOLE*[†], RICHARD J. HUNT[‡]§ and DAVID J. CANTRILL§

[†]Wood Anatomy Section, National Herbarium of the Netherlands Utrecht University branch, P.O. Box 80102, 3585 CS, Utrecht, The Netherlands, [‡]School of Earth Sciences, University of Leeds, Leeds, LS2 9JT, UK and §British Antarctic Survey, Natural Environmental Research Council, Madingley Road High Cross, Cambridge, CB3 0ET, UK

Received: 11 December 2000 Returned for revision: 12 February 2001 Accepted: 16 March 2001

Early Tertiary sediments of the Antarctic Peninsula region continue to yield a rich assemblage of well-preserved fossil dicotyledonous angiosperm wood. The wood flora under consideration is from the Collins Glacier region on Fildes Peninsula, King George Island and is derived from tuffaceous sediments of the Middle Unit of the Fildes Formation. These deposits accumulated in a volcanic setting adjacent to a basic-intermediate stratocone. The fossil assemblage provides further evidence for the existence of cool temperate forests, similar in composition to those found today in New Zealand, Australia and, in particular, southern South America. This paper describes two conifer and five angiosperm morphotypes, four of which are new additions to the Antarctica palaeoflora records. *Cupressinoxylon* Goeppert, which is the dominant conifer in terms of numbers, and *Podocarpoxylon* Gothan represent the conifers. The angiosperm component includes two species of *Nothofagoxylon* and two previously undescribed wood (Cunoniaceae). These morphotypes are described and assigned to the organ genera *Myrceugenelloxylon* Nishida, and *Weinmannioxylon* Petriella, respectively. A model based on the extant cool temperate Valdivian rainforests is proposed and ecological reconstructions based on palaeobotanical and geological evidence suggest that changes in the palaeovegetation reflect natural dynamics following volcanic disturbances.

Key words: Fossil wood, Antarctica, Myrtaceae, Eucryphia, Nothofagaceae, Eocene, Valdivia, Tertiary.

INTRODUCTION

Fossil floras from the Antarctic Peninsula region play an integral role in understanding the biodiversity and palaeoecology of high latitude forests that existed during the Late Cretaceous and Early Tertiary. Moreover, these plant records are crucial for studies of biogeographic trends during the final phases of the break-up of Gondwana, which in turn has important implications for phylogenetic studies. During the Late Cretaceous and Early Tertiary, the climate of the Antarctic Peninsula is suggested to have been relatively mild and moist with a lack of significant ice at high latitudes (Truswell, 1990; Askin, 1992; Francis, 1996). A cooling event occurred between the Late Cretaceous, with mean annual temperatures of 8-15 °C and a frostless climate, and the mid-Palaeocene (Askin, 1992; Zachos et al., 1993; Ditchfield et al., 1994; Dingle and Lavelle, 1998). Foliar evidence from King George Island (Birkenmajer and Zastawniak, 1986) and Seymour Island (Dusén, 1908; Case, 1988) suggests that during the Palaeocene a cool to warm temperate climate with mean annual temperatures of 10-12 °C and high rainfall (1000-4000 mm year⁻¹) prevailed. Based on shallow marine palaeotemperature data, the temperature reached its peak in the Early Eocene and subsequently declined during the Late Eocene (Ditchfield

* For correspondence. Fax +31 30 2535302, e-mail i.poole@geo.uu. nl

et al., 1994; Dingle and Lavelle, 1998 and references cited therein).

The composition of the vegetation on King George Island reflects the postulated warm to cool, moist climates. Palaeocene to Eocene leaf, wood and pollen floras (see Fig. 1 and Table 1) record elements associated with modern temperate austral forests such as Araucariaceae, Podocarpaceae, Nothofagaceae, Cunoniaceae, Lauraceae and some Proteaceae (e.g. Torres and Lemoigne, 1988; Askin, 1992; Li, 1992, 1994; Zhou and Li, 1994*a*; Markgraf *et al.*, 1996). Warm temperate, alongside relatively tropical, taxa such as Gunneraceae, Monimiaceae and Sterculiaceae, are also recognized in these floral assemblages (Orlando, 1964; Dettmann, 1989; Askin, 1992). These southern polar forests experienced a unique growth regime with long periods of winter darkness and near-continual low-angle incident sunlight during the summer months.

The tectonic setting of King George Island at a palaeolatitude of 62° S (approximately coincident with that of today; Lawver *et al.*, 1992) during the Early Tertiary comprised eastwards subduction of the Pacific Ocean floor beneath the Antarctic Peninsula. This resulted in uplift and active volcanism in the form of stratovolcanoes (Pankhurst and Smellie, 1983; Smellie *et al.*, 1984). Agglomerate and fossiliferous tuff deposits, intercalated with lavas in the Late Cretaceous to Early Tertiary strata on King George Island, are typical of the mixed effusive-explosive style of volcanism associated with these landforms (Shen, 1994; Xue *et al.*,

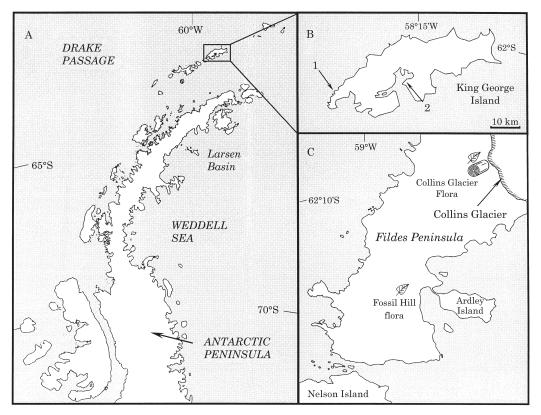


FIG. 1. Map of the Antarctic Peninsula region showing macrofossil localities mentioned in the text. A, Antarctic Peninsula region. B, King George Island showing the position of the Fildes Peninsula (1) and the Palaeocene-Eocene fossil plant locality, Point Hennequin (2) mentioned in the text. C, Fildes Peninsula showing the position of the Collins Glacier Flora, Fossil Hill flora and Ardley Island.

1996). Volcanism has important implications for the development of local and regional floras since it modifies pre-existing terrains and can destroy vegetation over a wide area, which in turn can lead to successional changes in the vegetation (Burnham and Spicer, 1986; Burnham, 1994).

This paper describes seven fossil wood morphotypes from the Collins Glacier Flora on Fildes Peninsula, King George Island. Four of these morphotypes are new records to the Antarctic palaeoflora. Using contemporaneous macrofossil records and comparisons with the ecosystem of southern South America today, the biogeographic and ecological implications of the flora are discussed in the context of the stratovolcanic setting.

MATERIALS AND METHODS

The wood material examined in this study was collected during the British Antarctic Survey expedition to the northern Antarctic Peninsula region during the 1999 field season. The details for repository, (type) locality and lithostratigraphic horizon are applicable to all wood material described below and have therefore not been repeated throughout the text. The material is associated with tuffaceous rocks from the Middle Unit of the Fildes Formation, Fildes Peninsula, King George Island 62°10'S 59° 04'W (Fig. 1). The age of this formation has been dated as Eocene (i.e. 49–43 Ma; Smellie pers. comm., 2000; Smellie *et al.*, 1984; Fensterseifer *et al.*, 1988; Soliani *et al.*, 1988). This is in agreement with Shen (1999) who included the outcrop in the Middle Eocene Rocky Cove Member of the Fossil Hill Formation.

The Collins Glacier Flora (Fig. 1C) consists of silicified wood fragments less than 40 cm long and approx. 30 cm in diameter found in an ochre coloured, modern clay outwash, which overlies green tuffaceous deposits of the Middle Unit, Fildes Formation. Some of the wood fragments retain pieces of the original fossiliferous lithology that weathers identically to the underlying tuffaceous sediments. This suggests that the wood has weathered from the same unit and may have been displaced only a short distance spatially and stratigraphically from its original position. Silicified wood specimens generally display a high degree of anatomical preservation, although some samples show evidence of crushing and localized degradation prior to petrifaction.

Wood specimens were thin-sectioned using standard techniques employed for petrified plant fossil material (e.g. Hass and Rowe, 1999). Systematic affinities of the fossils were initially determined by consulting reference literature such as Cutler and Gregory (1998), Metcalfe and Chalk (1950, 1989), Metcalfe (1987), Ilic (1991) and searching the computerized OPCN (Wheeler *et al.*, 1986; LaPasha and Wheeler, 1987) and CSIRO Family Key (Ilic, 1987) wood databases. Subsequent comparisons were made with extant wood samples housed in the Jodrell Laboratory, Royal Botanic Gardens Kew, UK; the Wood

	Luma apiculata ¹	Myrceugenelloxylon antarcticus sp. nov.	Eucryphia lucida ²	Weinmannioxylon eucryphioides sp. nov.
Ecological range	Below 700 m above sea level in both Andean and Coastal mountains of S. America	Unknown	Cool temperate rainforests of Tasmania, up to 1000 m above sea level	Unknown
Habit	Small tree in north, up to 25 m in southern part of its range	Unknown	Trees of moderate height	Unknown
Porosity	Diffuse; solitary, rarely in clusters; circular to elliptic	Diffuse; solitary, paired; circular to elliptic	Diffuse; solitary, paired, few in radial files and clusters; circular to angular, weakly elliptic	Diffuse to weakly semi-ring; solitary or paired, rarely in radial files and clusters; circular to slightly elliptic
Vessels				
Vessels				
Number per mm ²	1/5-220			67-179 35 105 (10)
VI \mathcal{O} µm range (mean)	15-38 (29)	(100) - (100	(14) (27) (27) (27) (27) (27) (27) (27) (27	22-105 (49)
VEV Jun range (mean)	12-21 (40) 125-800 (587)	(40) C:771-0C	(cc) c·/0-c·/c (UCL) UCL/UCL	(40) (0-1) (
Perforation plate (n° bars)	423-600 (367) Scalariform (21-37)	Scalariform (numerous)	Scalariform (up to 38), rarely simple	Scalariform (up to 55), rarely simple
Spiral thickening	Absent	Absent	Present	?Absent
Intervessel pitting	Circular to horizontally elongate,	Circular mainly horizontally elongate	Opposite to horizontally elongate,	Opposite to horizontally elongate,
Tyloses	Scalaritoriii Present	and scalationing Absent	Scatati of 111 Present*	Present
Ray Width Cell characteristics	Uniseriate and 2–3 seriate Procumbent hody cells and unright	Biseriate Procumbent hody cells and unright	Uniseriate, locally biseriate Sonare/nocumbent body cells sonare/	Uniseriate, locally biseriate Souare/nrocumbent hody cells_souare/
	ll cells	marginal cells	upright marginals; thickened walls	upright marginals; thickened walls
Height (µm) Ray-vessel pitting	80–915 Opposite to scalariform	50–400 Elongate to scalariform	90–520 Occasionally circular, mainly elongate to scalariform	120–910 Occasionally circular, mainly elongate to scalariform
Fibre-tracheid				
Wadial Ø (µm) Wall thickness (µm)	12-22	10-30	15-30 5-7.5	7.5-27.5
	7.0-0.7	H -0.7	0.1-0	C-7
Axial parenchyma	Diffuse	?Diffuse	Diffuse, diffuse in aggregate	?Diffuse

TABLE 1. Comparison of Myrceugenelloxylon antarcticus with its closest anatomical analogue extant Luma apiculata, and Weinmannioxylon eucryphioides with its

Anatomy Section in The National Herbarium, Utrecht University, The Netherlands; and the Federal Research Centre for Forestry and Forest Products, Hamburg, Germany. Wood measurements were taken in accordance with IAWA recommendations wherever possible (IAWA Committee, 1989) except in the case of vessel element length which was measured in thin sections of both fossil and modern wood samples, as maceration of the fossil material is not possible. The specimens are deposited at the British Antarctic Survey, Cambridge, UK.

SYSTEMATIC PALAEOBOTANY

Order: Coniferales Family: Cupressaceae Organ genus: *Cupressinoxylon* Goeppert

Type species: *Cupressinoxylon subaequale* Goeppert, 1850 *Cupressinoxylon* sp.

Material: P. 3023·81, P. 3023·82, P. 3023·83, P. 3023·84, P. 3023·89

Description: This description is based on five specimens: P. 3023·81 is a 16-year-old branch 4 cm in diameter; P. 3023·82 is branch wood at least 30 years old and 7 cm in diameter; P. 3023·83 is trunk wood at least 64 years old, no diameter could be estimated; P. 3023·84 is trunk wood at least 12 cm in diameter; and P. 3023·89 is branch wood 16–19 years old and 6 cm in diameter.

Growth rings: Distinct, ring boundary markedly defined by a narrow late wood zone (one-three cells wide) (Fig. 2). False rings present in P. 3023·83 and P. 3023·84 usually occurring in the latter part of the growth cycle. *Tracheids*: In transverse section 9 to 40 (mean 24) μ m in radial diameter. *Pitting*: In radial walls uniseriate, rarely biseriate (Fig. 3). Pit rows short, one to eight pits tall. Pits circular, bordered, apertures elliptical to slit-like, oblique (cupressoid) (Figs 3, 6). Rare tangential pits were observed in one specimen (P. 3023·84). Crossfield regions with one or rarely two cupressoid pits (Fig. 6). *Rays*: Uniseriate, one to 14 (median three) cells tall; approx. 12 rays per tangential millimetre (Fig. 4). *Pith*: Up to 800 μ m in diameter containing thick-walled (up to 12 μ m thick) sclerids with a diameter of up to 48 μ m.

Comparison: The walls of the medullary ray cells, particularly the tangential walls, are predominantly smooth, and crossfield regions are characterized by cupressoid pits. This combination of characters defines the form genus *Cupressinoxylon*. Although records of leaves (e.g. Zhou and Li, 1994*a*) confirm the presence of the Cupressaceae in King George Island floras (Table 2), wood has only been de scribed from Suffield Point (Torres *et al.*, 1984; Torres, 1990). This wood material, referred to as *C. parenchymatosum*, is

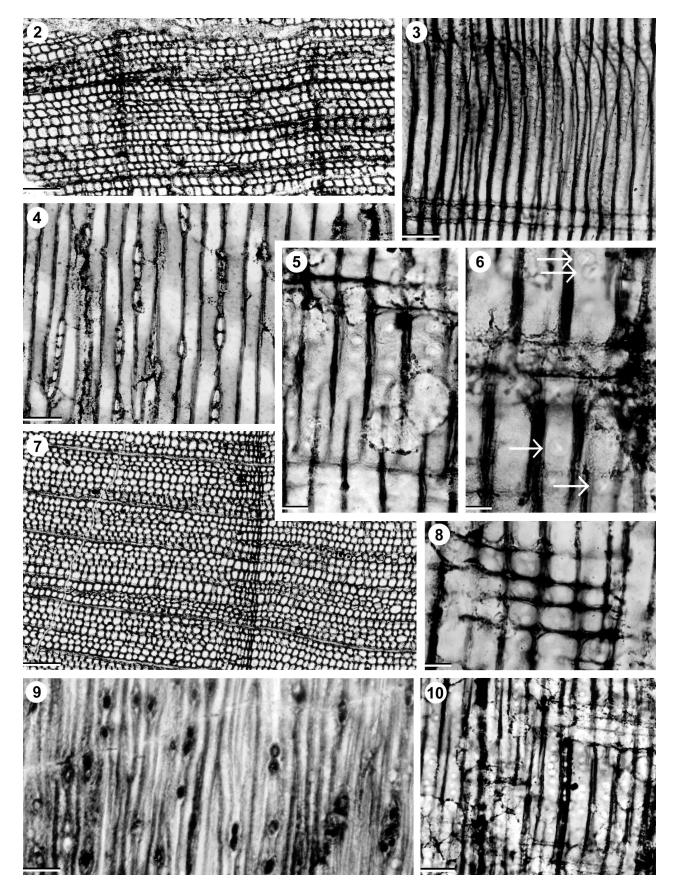
poorly preserved and the name has not been properly formalized. It is, however, anatomically similar to the material described here, but with slightly shorter rays (oneten) and more abundant axial parenchyma. No other cupressaceous wood has been recorded from King George Island sequences. Until detailed studies of the King George Island fossil conifer wood assemblages have been made following the discovery of more specimens, we feel that it is better to leave this material assigned to generic level only.

Family: Podocarpaceae

Organ genus: *Podocarpoxylon* Gothan, 1908 Type species: *Podocarpoxylon juniperoides* Gothan, 1908 *Podocarpoxylon fildesense* Zhang & Wang, 1994

Material: P. 3023.51

Description: This description is based on branch material that is at least 15 years old and over 7 cm in diameter.


Growth rings: Distinct slightly asymmetric, ring boundary subtle with a narrow late wood zone that is only two to three cells thick (Fig. 7). False rings absent. *Tracheids*: In transverse section 8 to 36 (mean 31) μ m in radial diameter. *Pitting*: In radial walls of the tracheids circular, pits bordered, typically podocarpoid, tangential walls with rare scattered pits (Figs 5, 10). Crossfield regions with one to four pits, pits also podocarpoid (Fig. 8). *Rays*: Uniseriate, one to five (median two) cells tall, approx. 19 rays per tangential millimetre (Fig. 9).

Comparison: This material is almost identical to *Podocarpoxylon fildesense* including the black resinous rays in tangential section (Zhang and Wang, 1994) (Fig. 9). The only major difference is ray height: Zhang and Wang (1994) reported rays ranging from one to 16 cells, but generally two to eight cells tall. In this material the ray height is substantially less (one-five cells) than that reported by Zhang and Wang (1994), but branch wood tends to have shorter rays (cf. Carlquist, 1988).

Class: Magnoliopsida Order: Fagales Family: Nothofagaceae Organ genus: *Nothofagoxylon* Gothan, 1908

Emended generic diagnosis: Fossil wood usually with distinct growth rings. Diffuse to semi-ring porous. Vessels solitary, in radial rows, sometimes small groups. Vessel outline circular, radially elongate, sometimes more angular. Intervessel pitting opposite, scalariform, sometimes alternate. Tyloses present. Ray vessel pitting circular, oval, horizontally elongate to scalariform, usually simple, sometimes bordered. Perforation plates predominantly simple, although scalariform perforation plates can be present in late wood vessels. Axial parenchyma rare. Rays heterocellular,

FIGS 2–10. Light micrographs of the fossil coniferous wood *Cupressinoxylon* sp. (Figs 2–4, 6) and *Podocarpoxylon fildesense* (Figs 5, 7–10). Fig. 2. Transverse section (TS) of P. 3023-82 showing the narrow late wood zone; bar = 100 μ m. Fig. 3. Radial longitudinal section (RLS) of P. 3023-83 showing uniseriate pitting in the tracheid walls, note the cupressoid pit type; bar = 50 μ m. Fig. 4. Tangential longitudinal section (TLS) of P. 3023-83 showing the short uniseriate rays; bar = 50 μ m. Fig. 5. RLS of P. 3023-51 showing uniseriate rows of podocarpoid pits; bar = 25 μ m. Fig. 6. RLS of P. 3023-83 showing cupressoid pits (arrowed) in the crossfield; bar = 25 μ m. Fig. 7. TS of P. 3023-51 showing the narrow late wood zone; bar = 100 μ m. Fig. 8. RLS of P. 3023-51 showing up to four podocarpoid pits per crossfield; bar = 25 μ m. Fig. 9. TLS of P. 3023-51 showing the short rays one to three cells high; bar = 50 μ m. Fig. 10. RLS of P. 3023-51 showing uniseriate rays of pits in the radial walls; bar = 50 μ m.

composed of procumbent body cells and upright marginal cells; generally uniseriate, biseriate and triseriate. Fibres with simple pits, either septate or non-septate.

Type species: Nothofagoxylon scalariforme Gothan, 1908

Nothofagus scalariforme Gothan, 1908

Material: P. 3023·12, P. 3023·14, P. 3023·19, P. 3023·24, P. 3023·26

Description: This description is based on five pieces of branch-, stem- or trunk wood. P. 3023·19, P. 3023·12, P. 3023·24 and P. 3023·26 each have a minimum estimated diameter of 3, 6, 6 and 8 cm, respectively, based on growth ring curvature. P. 3023·14 originated from the outer portion of a branch or trunk as the outer cortical layers are present but no diameter can be estimated.

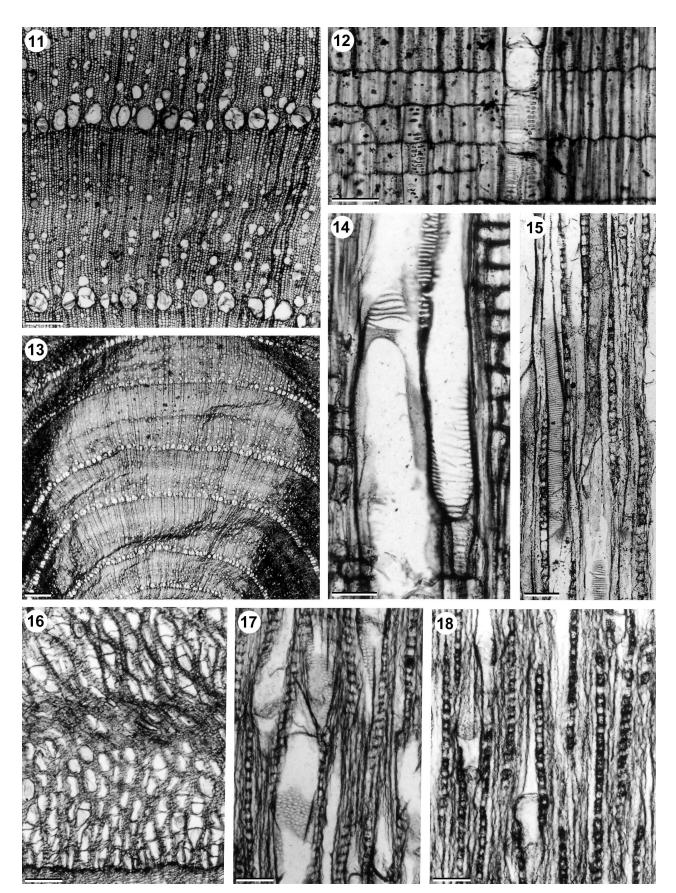
Growth rings: Distinct and weakly distinct demarcated by a change in fibre and vessel diameter (Fig. 11). Vessels: Semi-ring to ring porous, mainly solitary or in pairs but can be grouped into radial files of up to four pores (Figs 11 and 13). In cross section, vessels are thin-walled and generally circular to radially elliptic. The mean vessel tangential diameter is 64 µm (range: 20–130 µm), mean vessel radial diameter is 83 µm (range: 25-165 µm) and mean vessel element length is 598 µm (range: 160-850 µm). On average there are 88 vessels per mm² [range: (35) 68–116 mm⁻²]. Perforation plates: Simple in the large early wood vessels and scalariform in the narrower late wood vessels (Fig. 14). Abundant thin-walled tyloses within the vessel obscure vessel end walls making the determination of simple perforation plates difficult. Intervessel pitting: Mainly scalariform (Fig. 15), occasionally transitional, with pit diameters of up to 30 µm. Ray-vessel pitting: Mainly scalariform, occasionally ovalhorizontally elongate (Fig. 12), up to 18 µm in diameter. Fibres: Thin-walled, non-septate and organized into regular radial files in cross section; no fibre pitting was observed. Mean fibre tangential diameter is 16 μ m (range: 10–25 μ m) and mean fibre radial diameter is 15.5 µm (range: 10-25 µm). Axial parenchyma: None observed. Rays: Uniseriate, occasionally part biseriate or biseriate, composed of square and occasionally square-upright or more procumbent cells; ray height ranges from 130–960 µm. There are six–16 rays per tangential millimetre.

Comparison: The combination of small vessels solitary or in groups and circular to elliptic in cross section, mainly simple, occasionally scalariform perforation plates, narrow rays and opposite to scalariform intervessel pits are characteristic of extant *Nothofagus* and fossil *Nothofagoxylon* wood (e.g. Patel, 1986; Rancusi *et al.*, 1987). On this basis, these wood specimens are assigned to *Nothofagoxylon* which includes approximately 15 species in Antarctica and South America. These Antarctic woods exhibit anatomical characters consistent with *Nothofagoxylon scalariforme* and have thus been assigned to the type species. However, the vessel distribution in transverse section is also very similar to the specimen illustrated by **Pons and Vicente (1985)** for *Nothofagoxylon aconguaense* from South America. The Antarctic material differs from *Nothofagoxylon aconguaense* in that it lacks the characteristic multiseriate rays and alternate intervessel pitting. From comparisons with modern *Nothofagus* material, these fossil specimens share greatest anatomical similarity to *Nothofagus betuloides* Blume and *N. gunnii* Oerst.

Nothofagoxylon neuquense Cozzo, 1950 Material: P. 3023-41

Description: This description is based on one piece of fossil wood originating from a branch or trunk which has undergone some compression.

Growth rings: Distinct and demarcated by a change in fibre and vessel diameter (Fig. 16). Vessels: Semi-ring porous, mainly elliptical in cross section, solitary and paired (Fig. 16). Vessel diameter and abundance could not be measured accurately due to the compressed nature of the specimen. Thin-walled tyloses occur within the vessels. Perforation plates: Simple, although difficult to determine because of the abundant tyloses, and scalariform. Intervessel pitting: Mainly bordered, closely packed, opposite, horizontally elongate and subopposite to alternate with polygonal outlines (Fig. 17). Pit diameters range from 12 to 26 µm. Ray-vessel pitting: Simple, circular to almost square with a diameter of approx. 5 µm. Fibres: Compressed in tangential section, ?non-septate; no fibre pitting was observed. Axial parenchyma: Indeterminable in crosssection due to preservation; none observed in longitudinal section. Rays: Uniseriate (Fig. 18) some part biseriate, heterocellular, composed mainly of square-procumbent body cells becoming less procumbent (i.e. more square) towards the margins. Rays are 150-530 µm tall.


Comparison: This specimen from King George Island has undergone a degree of compression but all observable characters agree with those described by Cozzo (1950) for *Nothofagoxylon neuquenense* from the Tertiary of Neuquen, Santa Cruz in Argentina. This specimen differs from those assigned to *Nothofagoxylon scalariforme* in that the intervessel pits are predominantly alternate to opposite and ray-vessel pits are round-elliptic compared with the predominantly scalariforme. When compared with modern *Nothofagus* woods, the greatest similarity is shared with *Nothofagus procera*.

Nothofagoxylon corrugatus sp. nov.

Holotype: P. 3023.9

Etymology: After the Latin 'corrugatus' referring to the characteristic undulated appearance of the wood in cross section.

FIGS 11–18. Light micrographs of *Nothofagoxylon scalariforme* (Figs 11–15) and *Nothofagoxylon neuquenense* (Figs 16–18). Fig. 11. Transverse section (TS) of P. 3023·19; bar = 200 μm. Fig. 12. Radial longitudinal section (RLS) of P. 3023·19 showing ray structure and vessel ray pitting; bar = 50 μm. Fig. 13. TS of P. 3023·19 illustrating vessel arrangement; bar = 500 μm. Fig. 14. RLS of P. 3023·24 showing simple and scalariform perforation plates; bar = 50 μm. Fig. 15. Tangential longitudinal section (TLS) of P. 3023·14 showing uniseriate rays; bar = 75 μm. Fig. 16. TS of P. 3023·41 showing the vessel arrangement; bar = 200 μm. Fig. 17. Oblique TLS of P. 3023·41 showing the characteristic alternate-opposite intervessel pitting; bar = 75 μm. Fig. 18. TLS of P. 3023·41 showing the uniseriate rays; bar = 75 μm.

Other material: P. 3023·3, P. 3023·5, P. 3023·13, P. 3023·21, P. 3023·50

Species diagnosis: Growth rings distinct and deeply undulating. Semi-ring to weakly diffuse porous. Vessels solitary, paired, radial files of up to eight pores, predominantly radially elliptical, and more or less circular in cross section. Perforation plates simple in the early wood and scalariform in the late wood. Intervessel pitting scalariform. Ray vessel pitting horizontally elongate to scalariform. Rays heterocellular uniseriate (>70%), occasionally part biseriate (<30%); crystals absent. Fibres thin-walled, nonseptate, in regular radial files. Axial parenchyma rare.

Description: This description is based on six pieces of branch-, stem- or trunk wood. P. 3023.5, P. 3023.3, P. 3023.9, P. 3023.13 and P. 3023.21 are probably derived from stem material with minimum estimated diameters of 5, 7, 8 and 10 cm, respectively, based on growth ring curvature. P. 3023.50 probably originated from a branch or trunk and no diameter can be estimated.

Growth rings: Distinct and naturally undulating (Fig. 19) demarcated by a change in fibre and vessel diameter (Fig. 20). Vessels: Semi-ring to weakly diffuse porous, mainly solitary or in pairs (Fig. 20) but can be grouped into radial files of up to eight pores. In cross section they appear radially elliptic and circular, with thin vessel walls. The mean vessel tangential diameter is 53.5 µm (range: 25-92.5 µm), mean vessel radial diameter is 73 µm (range: 25– 150 µm) and mean vessel element length is 671 µm (range: $320-980 \ \mu\text{m}$). There are, on average, 112 vessels per mm² (range: 84-142 mm⁻²). Perforation plates: Simple in the large early wood vessels and scalariform in the narrower late wood vessels (Figs 21 and 25). Thin-walled tyloses within the vessel obscure the vessel end walls thus making the determination of simple perforation plates difficult (Fig. 21). Intervessel pitting: Mainly scalariform (Fig. 23), occasionally transitional, with pit diameters of up to 30 µm. Rayvessel pitting: Mainly scalariform, occasionally oval-horizontally elongate (Fig. 24); up to 25 μm in diameter. Fibres: Thin-walled, non-septate and organized into regular radial files in cross section; no fibre pitting was observed. Mean fibre tangential diameter is $13.5 \,\mu\text{m}$ (range: $7.5-17.5 \,\mu\text{m}$) and mean fibre radial diameter is 15 μ m (range: 7.5–25 μ m). Axial parenchyma: None observed. Rays: Uniseriate, rarely part biseriate (Figs 22 and 23), entirely biseriate in P. 3023.13; composed of square-procumbent and occasionally square-upright and upright cells (Fig. 21); ray height ranges from 100-920 µm. There are nine-16 rays per tangential millimetre.

Comparison: The Antarctic woods can be distinguished from other species of *Nothofagoxylon* in having a combination of simple and scalariform perforation plates, scalariform intervessel and vessel ray pits, entirely uniseriate rays and a characteristic undulating appearance of the wood in cross section. Closest anatomical similarity is with the Miocene/Pliocene Sirius Formation woods, Nothofagus sp., described by Carlquist (1987) from the Transantarctic Mountains, and Nothofagoxylon scalariforme (Gothan, 1908) from the Cretaceous of Seymour Island. Nothofagus sp. differs in that the King George Island material lacks the characteristic change from transitional early wood intervessel pits to scalariform intervessel pits in early and late wood, respectively, and the Sirius Nothofagus material is not described as having undulations in transverse section (Carlquist, 1987). Specimens assigned to Nothofagoxvlon corrugatus differ from Nothofagoxylon scalariforme in the presence of distinct undulations in transverse section. This feature is readily identifiable in the fossil wood with the naked eye, and we believe that this distinct feature supports the erection of the new anatomical species.

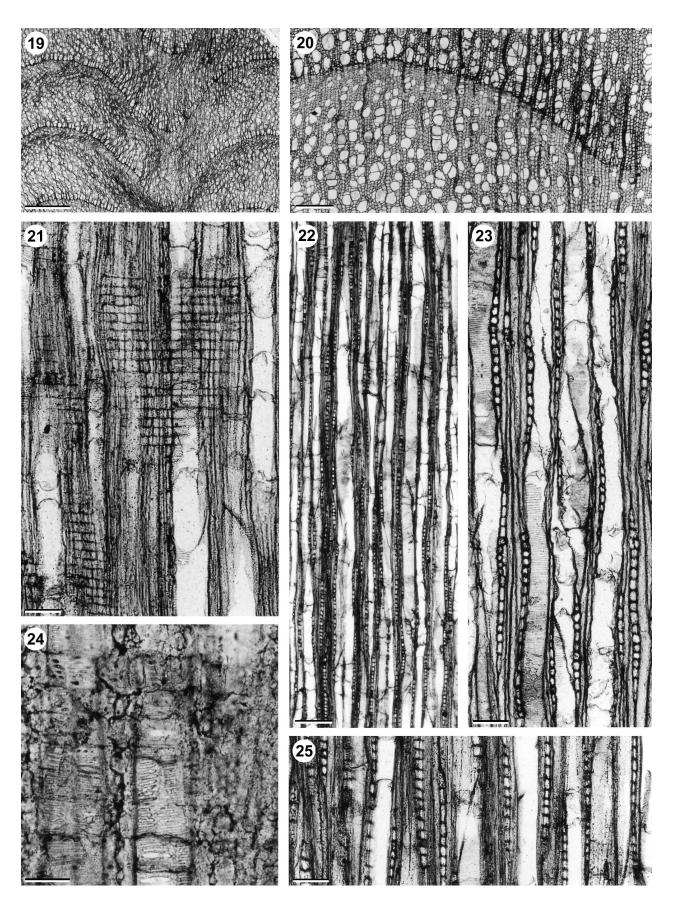
These Antarctic woods are similar in transverse section to extant Nothofagus solandri Oerst. and Nothofagus fusca Oerst. from New Zealand, both of which have the characteristic undulating appearance. Moreover, simple perforation plates in the early wood and scalariform perforation plates in the late wood characterize New Zealand Nothofagus (Patel, 1986; Carlquist, 1987) and the fossil material. However, New Zealand species tend to have only opposite, occasionally alternate intervessel pits (Patel, 1986; Carlquist, 1987) thus distinguishing them from the fossil species described here. The longitudinal anatomy of the fossils is more similar to South American N. antarctica (Forst.) Oerst., N. pumilio Reiche, N. nitida Reiche and N. betuloides, and the Tasmanian N. gunnii. Nothofagus antarctica can exhibit some transectional undulations (Ilic, 1991) but does not have scalariform perforation plates in the narrow vessels, and ray vessel pitting can be irregular (Rancusi et al., 1987). Nothofagus pumilio and N. nitida differ from the fossil material in that the extant material has simple perforation plates and diffuse porous wood (Rancusi et al., 1987; Ilic, 1991). Nothofagus betuloides and N. gunnii are most similar anatomically, exhibiting the characteristic change from transitional intervessel pitting to scalariform intervessel pitting seen in early and late wood, respectively (Carlquist, 1987), but both lack the obvious undulations in transverse section.

Order: Rosales

Family: Cunoniaceae

Organ genus: Weinmannioxylon Petriella, 1972

Type species: Weinmannioxylon multiperforatum Petriella,


1972

Weinmannioxylon eucryphioides sp. nov.

Holotype: P. 3023-11

Etymology: After *Eucryphia* with which the fossils show good similarity

FIGS 19–25. Light micrographs of *Nothofagoxylon corrugatus* sp. nov. Fig. 19. Transverse section (TS) of P. 3023-3 showing the characteristic undulations; bar = 1 mm. Fig. 20. TS of P. 3023-9 showing the vessel arrangement; bar = 200 μ m. Fig. 21. Radial longitudinal section (RLS) of P. 3023-5 showing ray structure and simple perforation plate in a large diameter vessel; bar = 75 μ m. Fig. 22. Tangential longitudinal section (TLS) of P. 3023-9 showing uniseriate rays in the early wood; bar = 200 μ m. Fig. 23. TLS of P. 3023-5 showing scalariform intervessel pitting and tyloses; bar = 75 μ m. Fig. 24. RLS of P. 3023-5 showing scalariform vessel ray pits; bar = 50 μ m. Fig. 25. TLS of P. 3023-9 showing scalariform perforation plate; bar = 75 μ m.

Other material: P. 3023·6, P. 3023·10, P. 3023·31, P. 3023·32, P. 3023·54

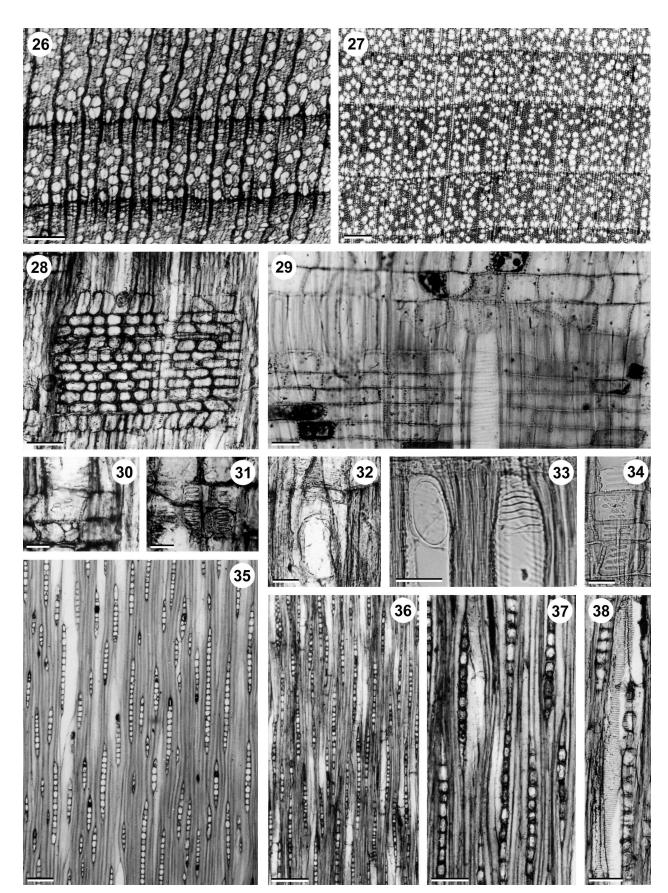
Species diagnosis: Vessels numerous, mainly solitary, paired, rarely grouped; mean tangential diameter approx. 50 μ m; mean element length 700 μ m. Perforations plates scalariform with numerous bars, rarely simple. Intervessel and vessel ray pitting opposite to scalariform. Rays heterocellular; uniseriate, locally biseriate; up to 1000 μ m in height.

Description: This description is based on five pieces of branch-, stem- or trunk wood. P. 3023·54, P. 3023·32, P. 3023·31 and P. 3023·11 each have a pith present and have a minimum estimated diameter of 5, 6, 6·5 and 8 cm respectively. P. 3023·10 and P. 3023·6 probably originated from larger branch or trunk organs of unknown diameter.

Growth rings: Distinct and demarcated by a decrease in the radial diameter of one-four rows of fibres and overall vessel diameter (Fig. 26). Vessels: Semi-ring to weakly diffuse porous, mainly solitary or in pairs but can be grouped into short radial files of up to five pores; clusters of up to five vessels are also present. In cross section they appear more or less circular with thin vessel walls. The mean vessel tangential diameter is 49.5 µm [range: 25-105 (200) μm], mean vessel radial diameter is 63.5 μm [range: 17.5-95 (187.5) µm] and mean vessel element length is 714 µm (range: 620–1160 µm). There are, on average, 103 vessels per mm^2 (range: 62–179 mm⁻²) with fewer vessels occurring in the larger diameter material. Perforation plates: Scalariform (Fig. 37) with up to 55 bars, very rarely simple (Fig. 32). Thin-walled tyloses are present in specimens P. 3023.11 and P. 3023.6. Intervessel pitting: Mainly scalariform (Fig. 38), occasionally transitional, circular and opposite with pit diameters ranging from 6–17 µm. Ray-vessel pitting: Occasionally circular, mainly elliptic (Fig. 30), horizontally elongate to scalariform (Fig. 31), with pit diameters of up to 15 µm, mainly horizontal but occasionally tend towards a diagonal orientation. Fibres: Thin-walled, non-septate and organized into regular radial files in cross section. No fibre pitting was observed. Mean fibre tangential diameter is $17 \mu m$ (range: 10–30 μm) and mean fibre radial diameter is 15 μm (range: 7·5–27·5 μm). Axial parenchyma: None observed. Rays: Relatively short, uniseriate (Figs 36 and 37), rarely partly biseriate (Fig. 36), composed of mainly square, square-procumbent and procumbent body cells and one or two rows of more upright marginal cells (Fig. 28). Some ray cells have thickened walls. Range in height from 120-910 (1400) µm. There are seven-15 rays per tangential millimetre.

Comparison: The combination of predominantly uniseriate rays, scalariform, rarely simple, perforation plates, scalariform intervessel pitting and transitional to scalariform vessel ray pitting is characteristic of Eucryphia Cav. of the Cunoniaceae (or Eucryphiaceae according to some authorities e.g. Taylor and Hill, 1996; Figs 27, 29, 33-35). The fossil material differs from Eucryphia in general in that there are no obvious helical thickenings, and fibres with slitlike apertures to the pits were not observed (both possibly due to preservation); in addition, Eucryphia generally has a greater predominance of biseriate rays. Greatest anatomical similarity within Eucryphia is shared with E. lucida Druce from Tasmania, Australia (see Table 1 for a summary and Figs 27, 29, 33–35). The preponderance of highly oblique scalariform perforation plates in the fossil, and uniseriate as opposed to uniseriate-, biseriate- and triseriate rays, in conjunction with simple and scalariform (as opposed to a dominance of scalariform) perforation plates, distinguishes this fossil specimen from the South American species of Eucryphia [i.e. E. cordifolia Cav. and E. glutinosa (Poepp. & Endl) Baillonl. Interestingly, helical thickenings (not observed in the fossil) are less conspicuous or entirely absent in E. cordifolia and E. glutinosa (Dickison, 1978).

Torres (1985) noted the presence of eucryphiaceous wood in the Antarctic flora. She illustrated a cross section (with solitary and grouped vessels at a growth ring boundary) and a tangential section (showing obvious biseriate to triseriate rays), presumably from the same specimen as the cross section, but no description or further illustrations were provided. The wood illustrated by Torres is anatomically distinct from Weinmannioxylon eucryphioides, but without a detailed description and more illustrations no determination of validity or further comparisons with modern Eucryphia or Weinmannioxylon eucryphioides can be made. The fossil specimens described here differ from other species assigned to the organ genus Weinmannioxylon (i.e. Petriella, 1972; Poole et al., 2000; Poole and Cantrill, 2001) in that the other species have relatively short, entirely uniseriate rays, predominantly scalariform vessel ray pitting and entirely scalariform perforation plates. In the light of the close anatomical similarity to Eucryphia and the apparent differences when compared with other cunoniaceous fossils, we feel that this justifies the erection of the new species, Weinmannioxylon eucryphioides.


Order: Myrtales

Family: Myrtaceae

Organ genus: Myceugenelloxylon Nishida, 1984

Emended generic diagnosis: Wood diffuse porous. Pores generally solitary, multiple pores often two-three, evenly scattered throughout the wood. Perforation plates scalariform with few to many bars. Intervessel pits opposite to

FIG. 26–38. Light micrographs of *Weinmannioxylon eucryphioides* sp. nov. (Figs 26, 28, 30–32, 36–38) and extant *Eucryphia lucida* (Figs 27, 29, 33–35) for comparison with the fossil. Fig. 26. Tangential section (TS) of P. 3023·11 showing vessel distribution; bar = 200 μ m. Fig. 27. TS of *Eucryphia lucida* (Kew: *E. billardieri* IFI.11156 Australia); bar = 250 μ m. Fig. 28. Radial longitudinal section (RLS) of P. 3023·6 showing ray cell composition; bar = 75 μ m. Fig. 29. RLS of *Eucryphia lucida* (Kew: *E. billardieri* IFI.11156 Australia); bar = 250 μ m. Fig. 28. Radial longitudinal section (RLS) of P. 3023·6 showing ray cell composition; bar = 75 μ m. Fig. 29. RLS of *Eucryphia lucida* (Kew: *E. billardieri* IFI.11156 Australia); bar = 25 μ m. Fig. 30. RLS of P. 3023·6 showing elliptical vessel ray pits; bar = 25 μ m. Fig. 31. RLS of P. 3023·6 showing scalariform vessel ray pits; bar = 25 μ m. Fig. 32. RLS of P. 3023·6 showing simple perforation plate; bar = 25 μ m. Fig. 33. RLS of *Eucryphia lucida* (Utrecht: WC006) showing simple and scalariform perforation plates; bar = 50 μ m. Fig. 34. RLS of *Eucryphia lucida* (Kew: *E. billardieri* IFI.11156 Australia) showing of *Eucryphia lucida* (Kew: *E. billardieri* IFI.11156 Australia) showing of *Eucryphia lucida* (Utrecht: WC006) showing simple and scalariform perforation plates; bar = 50 μ m. Fig. 34. RLS of P. 3023·64 showing simple and scalariform vessel ray pits; bar = 25 μ m. Fig. 35. Tangential longitudinal section (TLS) showing of *Eucryphia lucida* (Kew: *E. billardieri* IFI.11156 Australia) showing the predominance of uniseriate rays; bar = 250 μ m. Fig. 36. TLS of P. 3023·54 showing uniseriate rays; bar = 200 μ m. Fig. 37. TLS of P. 3023·54 showing scalariform perforation plate and uniseriate rays; bar = 75 μ m. Fig. 38. TLS of P. 3023·10 showing scalariform intervessel pitting; bar = 75 μ m.

scalariform, occasionally alternate. Vessel ray pits circular to horizontally elongated. Rays uni- to triseriate, rarely quadriseriate; multiseriate rays heterocellular with upright cells forming marginal rows which axially unite some multiseriate rays.

Type species: *Myceugenelloxylon pseudoapiculatum* Nishida, 1984

Other taxa: *Myceugenelloxylon maytenoides* (Nishida Nishida et Nasa) Poole Hunt Cantrill comb. nov

Myceugenelloxylon antarcticus sp. nov.

Holotype: P. 3023.4

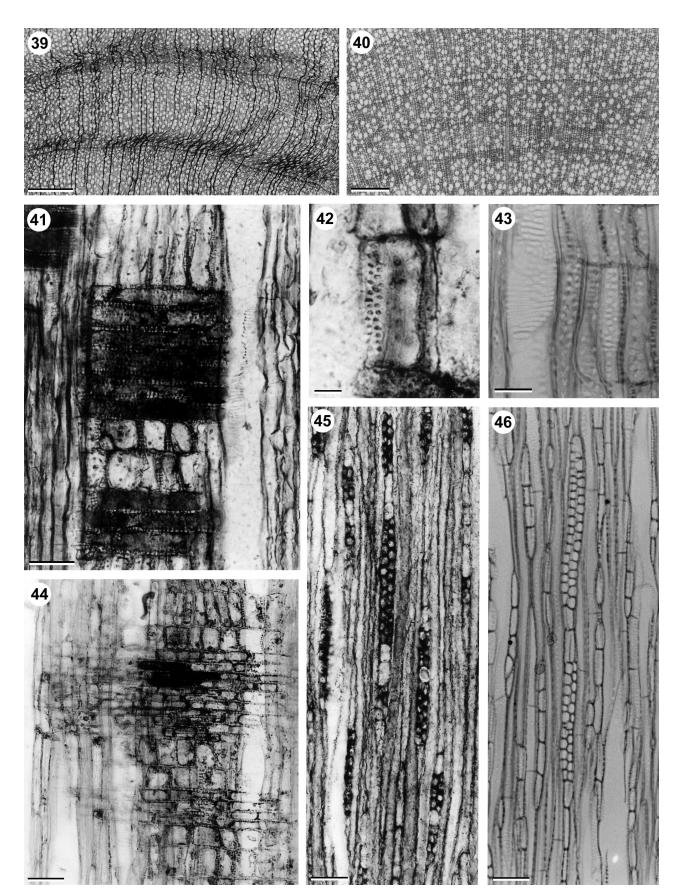
Etymology: After Antarctica where the material was found.

Species diagnosis: Vessels abundant, mainly solitary, paired, rarely grouped; mean element length approx. 715 μ m. Perforations scalariform with numerous bars. Intervessel and vessel ray pitting opposite to scalariform. Rays biseriate with uniseriate wings almost as wide as the biseriate body; heterocellular, composed of procumbent body cells and up to six rows of upright marginal cells; up to 500 μ m in height; sometimes two or three rays fused axially.

Description: This description is based on one piece of fossil wood, P. 3023.4, from the inner portion of a branch or trunk with a minimum estimated diameter of 8 cm.

Growth rings: Distinct and demarcated by a change in the radial diameter of one to three rows of fibres and a slight change in vessel diameter (Fig. 39). Vessels: Weakly diffuse porous, mainly solitary or paired, and circular to radially elliptic in cross section (Fig. 39). Vessels are thin walled. The mean vessel tangential diameter is 54 μ m (range: 37.5– $67.5 \,\mu\text{m}$) and mean vessel radial diameter is 84 μm (range: $50-122.5 \ \mu\text{m}$; mean vessel element length is 1540 μm (range: 1300-1875 µm). Tyloses are absent. There are, on average, 88 vessels per mm² (range: 77-102 mm⁻²). Perforation plates: Scalariform (Fig. 41) with numerous bars per perforation plate (exact number indeterminable due to preservation and fineness of bars). Intervessel pitting: Mainly horizontally elongate to scalariform, sometimes more circular and oppositely arranged. Ray-vessel pitting: Small circular to horizontally elliptic (Fig. 42), opposite very rarely more transitional. Fibres: Non-septate; no fibre pitting was observed. Mean fibre tangential diameter is 20 μ m (range: 12.5–27.5 μ m), mean fibre radial diameter is $20 \ \mu m$ (range: $10-30 \ \mu m$) and thin walls have a radial thickness of 2.5-4 µm. Axial parenchyma: Rare and ?diffuse. Rays: Heterocellular and biseriate with up to eight upright marginal rows of cells which can axially unite neighbouring rays (Fig. 45), very rarely uniseriate. The biseriate portion tends to be as wide, in tangential longitudinal section, as the uniseriate portions (Fig. 45). Rays are composed of more or less procumbent cells forming the body and usually three, but up to six rows of tall (i.e. $30-130 \ \mu\text{m}$) upright marginal cells (Fig. 41). Some of the ray cells have thickened walls (Fig. 41). Rays are short, ranging from 300 to 500 (-700) μm when ununited. There are four to nine rays per tangential millimetre.

Differential description and affinity: The two organ genera for myrtaceous fossil wood with closest anatomical similarity to the specimen described above are Myrceugenelloxylon (Nishida, 1984) and Myrceugenellites (Nishida et al., 1988) from South America. According to Nishida et al. (1988), the genus Myrceugenelloxylon is distinguished from Myrceugenellites by vessel density and number of bars per perforation plate only. In modern material, quantitative differences are variable among specimens of the same taxon; therefore, these differences are not considered great enough to warrant a separate organ genus and the organ genus Myrceugenellites is thus considered a junior synonym of Myrceugenelloxylon.


Myrceugenelloxylon antarcticus differs from the two species of Myrceugenelloxylon from South America, i.e. M. pseudoapiculatum and M. maytenoides, in that the Antarctic specimens have fewer vessels per mm², rays that are predominantly biseriate (as opposed to predominantly biseriate and triseriate), and a greater abundance of scalariform ray vessel pits. Myrceugenelloxylon pseudoapiculatum (Nishida, 1984) lacks axially fused rays and M. maytenoides (Nishida et al., 1988) has frequent reticulate areas in the scalariform perforation plates. Other myrtaceous fossil woods (i.e. Gottwald, 1966; Kramer, 1974; Ragonese, 1980) can be distinguished from the Antarctic specimen in that they have entirely simple perforation plates. The anatomical similarity shared with extant Luma apiculata (DC) Burret and the differences seen when compared with other myrtaceous fossils from South America justifies the erection of the new species Myrceugenelloxylon antarcticus for this specimen.

Myrceugenelloxylon antarcticus shows greatest similarity to extant *Luma* and, in particular, *Luma apiculata* [previously *Myrceugenella apiculata* (DC) Kaus; Myrtaceae; Figs 40, 43, 44 and 46] from temperate South America. *Luma apiculata* has predominantly biseriate rays, scalariform intervessel- and vessel ray pits, as shared with the fossil, but differs in having a greater number of bars per perforation plate and more uniseriate rays than the fossil. In all other characters, the fossil and *L. apiculata* compare favourably (see Table 1 and Figs 40, 43, 44 and 46).

DISCUSSION

The palaeoforests that grew on King George Island during the Eocene are similar in composition to the extant cool temperate Valdivian rainforests of Chile which lie between

FIGS 39–46. Light micrographs of *Myrceugenelloxylon antarcticus* sp. nov. (P. 3023-4; Figs 39, 41, 42, 45) and *Luma apiculata* (Figs 40, 43, 44, 46) for comparison with the fossil. Fig. 39. Transverse section (TS) showing the vessel arrangement; bar = 1 mm. Fig. 40. TS showing vessel arrangement; bar = 200 μ m. Fig. 41. Radial longitudinal section (RLS) showing the thickened ray cells and ray composition and scalariform perforation plate; bar = 50 μ m. Fig. 42. RLS showing ray cell pitting; bar = 15 μ m. Fig. 43. RLS showing ray cell pitting; bar = 25 μ m. Fig. 44. RLS showing ray cell composition and scalariform perforation plate; bar = 75 μ m. Fig. 45. Tangential longitudinal section (TLS) showing axially united biseriate rays and occasional uniseriate ray (merging from bottom middle); bar = 75 μ m. Fig. 46. TLS showing axially united biseriate rays and relatively abundant uniseriate rays; bar = 75 μ m.

Families found on King George Island	Present in Valdivian rainforest?	Reference to nalaeobotanical literature
, ,		
Sphenophytes		
Equisetum	Present	Barton, 1964; Dutra, 1989a; R.J. Hunt (work in progress)
Pteridophytes		
Adiantaceae	Present	Cao, 1992
Aspleniaceae	Present	Troncoso, 1986; Li and Shen, 1989
Blechnaceae	Present	Troncoso, 1986; Birkenmajer and Zastawniak, 1989
Cyatheaceae	Present	Lyra, 1986; Torres and Meon, 1990; Cao, 1992; Li, 1992; Zhou and Li, 1994b; Duan and Cao, 1998
Dennstaedtiaceae	Present	Stuchlik, 1981
Dicksoniaceae	Present	Troncoso, 1986; Li and Shen, 1989; Cao, 1992; Li, 1992; Zhou and Li, 1994b
Gleicheniaceae	Present	Stuchlik, 1981; Li and Shen, 1989; Cao, 1992, 1994; Li, 1994; Zhou and Li, 1994b; Duan and Cao, 1998
Hymenophyllaceae	Present	Stuchlik, 1981
Lophosoriaeceae	Present	Torres and Meon, 1993; R.J. Hunt (work in progress)
Osmundaceae	Present	Li and Shen, 1989; Li, 1992; Cao, 1994; Zastawniak, 1994; Zhou and Li, 1994 <i>b</i>
Polypodiaceae	Present	Stuchlik, 1981; Cao, 1992, 1994; Duan and Cao, 1998; Hunt and Page (work in progress)
Salviniaceae	Present	Stuchlik, 1981
Schizeaceae	Present	Stuchlik, 1981
Lycophytes Selaginellaceae	Present	Cao, 1992
Cycadophytes Zamiaceae	Absent	Li, 1994; Zhou and Li, 1994 <i>a</i>
Coniferophytes		
Araucariaceae	Present	Barton, 1964; Lucas and Lacey, 1981; Davies, 1982; Torres, 1985; Troncoso, 1986; Palma-Heldt, 1987; Torres
		and Lemoigne, 1988; Torres and Meon, 1990; Hee and Soon, 1991; Cao, 1992, 1994; Zastawniak, 1994; Zhou and Li, 1994a
Cupressaceae	Present	Orlando, 1963, 1964; Torres et al., 1984; Torres, 1985; Czajkowski and Rosler, 1986; Li and Shen, 1989; Li, 1992; Zhou and Li, 1994a
Podocarpaceae (including Phyllocladus)	Present	Zastawniak, 1981; Zastawniak <i>et al.</i> , 1985; Torres, 1985; Lyra, 1986; Troncoso, 1986; Palma-Heldt, 1987; Torres and Lemoigne, 1988; Torres and Meon, 1990; Li and Shen, 1989; Li, 1992; Zhang and Wang, 1994; Cao, 1992, 1994; <i>Zastawniak, 1994</i> ; Zhou and Li, 1994 <i>x</i> ; Duan and Cao, 1998

TABLE 2. Table illustrating the high level (84%) of similarity between the Late Cretaceous to Eocene/Oligocene King George Island palaeofloral composition and that of the cool temperate Valdivian rainforests of South America

Li, 1992, 1994 Troncoso, 1986; Birkenmajer and Zastawniak, 1986 Czajkowski and Rosler, 1986	Stuchak and Batterh, 2000 Stuchik, 1981; Birkenmajer and Zastawniak, 1986; Troncoso, 1986; Palma-Heldt, 1987 Zastawniak, 1981; Czajkowski and Rosler, 1986; Li and Shen, 1989; Li, 1992, 1994	Suchtik, 1981 Zastawniak <i>et al.</i> , 1985; <i>Birkennajer and Zastawniak, 1986</i> Torres, 1985; Czajkowski and Rosler, 1986; Li and Shen, 1989; Zhang and Wang, 1994 but see Poole <i>et al.</i> , 2000 Orlando, 1964; <i>Birkennajer and Zastawniak, 1986</i> ; Zastawniak, 1994 Torres and Meon, 1990	Troncoso, 1986 Orlando, 1964; Del Valle et al., 1984; Birkenmajer and Zastawniak, 1986; Troncoso, 1986 Cao, 1992 Li and Shen, 1989; Li, 1992, 1994 Orlando, 1964; Del Valle et al., 1984; Troncoso, 1986; Birkenmajer and Zastawniak, 1989 Czajkowski and Rosler, 1986; Troncoso, 1986; Dutra, 1989a	Orlando, 1964; Czajkowski and Kosler, 1986; Palma-Heldt, 1987; Cao, 1992; LJ, 1994; Zastwamak, 1994 Barton, 1964; Zastawniak, 1981; Del Valle <i>et al.</i> , 1984; Torres, 1984, 1985; Zastawniak <i>et al.</i> , 1985; Czajkowski and Rosler, 1986; Lyra, 1986; Troncoso, 1986; <i>Tokarski et al.</i> , 1987; Torres and Lemoigne, 1988; Dutra 1989 <i>a</i> , <i>b</i> ; Li and Shen, 1989; Cao, 1992, 1994; Li, 1992, 1994; Zastawniak, 1994; Zhang and Wang, 1994; Duan and Cao, 1998; Dutra and Batten, 2000	Orlando, 1964; Czajkowski and Rosler, 1986; <i>Troncoso, 198</i> 6; Dutra, 1989b; Li and Shen, 1989; Torres and Meon, 1990; Cao, 1992; Li, 1992, 1994 Stuchlik, 1981; Zastawniak <i>et al.</i> , 1985; Dutra, 1989 <i>a, b</i> <i>Zastawniak, 1981</i> ; Troncoso, 1986; Dutra, 1989 <i>a</i>	Orlando, 1964; Del Valle <i>et al.</i> , 1984; Czajkowski and Rosler, 1986; Birkenmajer and Zastawniak, 1986; Li and Shen, 1989; Shen, 1994 Birkenmajer and Zastawniak, 1986
Present Absent Present	Present Present	Present Absent Present Absent Present	Present Present Absent Present	Present	Present Present Absent	Present Present
Angiosperms ?Araliaceae ?Hydrangeaceae ?Molversona	maryaccac ?Poaceae Anacardiaceae	<i>Chusquea</i> Cochlospermaceae Cunoniaceae (including Eucryphiaceae) Dilleniaceae Gunneraceae	Icacinaceae Lauraceae Loranthaceae Monimiaceae Myricaceae	Myrtaceae Nothofagaceae	Proteaceae Rhamnaceae Sapindaceae	Sterculiaceae ?Verbenaceae

" in front of the family name indicates tentative assignment to that family; author and/or date in italics indicates tentative assignment to that family by the author indicated.

approx. 37°45' and 43°20'S (see Table 2). Some similarities can also be found with the broad-leaved temperate forests of Tasmania and New Zealand (see Hill and Scriven, 1995 and references therein). However, the Valdivian rainforests occur in a geological setting most similar to that seen on King George Island in the Tertiary; that is, oceanic crust being subducted beneath a convergent continental margin. This activity resulted in the formation of mountains (Antarctic Peninsula and the Andes, respectively) and crustal melting at depth that in turn led to volcanism and the development of large stratovolcanoes. Furthermore, both areas are on the eastern side of the Pacific where trade winds provide strong orographic rainfall. The structure of the Valdivian rainforest is governed by high rainfall (mean annual precipitation > 3000 mm), altitude, and disturbance largely as a result of volcanic activity (Veblen and Ashton, 1978). Since similar floristic composition, postulated high rainfall and volcanic disturbance characterize the King George Island setting, the structure and ecology of the Valdivian forests provides a working model for the interpretation of fossil assemblages from Fildes Peninsula.

The Valdivian Model

Along the Andean margin of South America where the Pacific plate is being subducted beneath the South American continent, stratovolcanic activity is a major cause of disturbance along with associated events such as landslides, earthquakes, damming and flooding of lake systems and lahars. Glacial erosion and deposition also contribute to the general disturbance, especially in the high altitudes of the Andes. Volcanic activity is especially important in the maintenance of plant community structure and the composition of the cool temperate Valdivian rainforests. Vegetation close to the vent becomes buried or flattened (Spicer, 1989). With decreasing altitude, vegetation is partially buried or succumbs to forest fire, resulting in complete to partial dieback of stand vegetation. Ash and lava often defoliate and/or bury plants and cause widespread tree-fall. Fires and poisoning by noxious gases also result in plant death. In more distal locations the effects of volcanism may be less severe with limited fire and defoliation rather than death of the forest trees. Secondary effects of the eruptions can be equally disruptive: inundation of lakes leads to temporary damming of drainage systems, drowning valley bottom floras.

Climax (pre-eruption) vegetation. The Valdivian rainforests occur most extensively along the Coastal Range to the western flanks of the Andes. The higher, more xeric slopes above the broadleaved tree zone in the northern (i.e. approx. 38°S) part of the Valdivian rainforest support stands of Araucariaceae which give way to a more podocarpaceous cool-adapted, Nothofagaceae-dominated vegetation at slightly lower altitudes. Here *Nothofagus* forms the emergent tree stratum and the podocarps, which are more diverse in height, contribute to both the dominant and subdominant strata (Veblen *et al.*, 1996). On poorly drained sites, e.g. along ridge flanks at all elevations, and xeric sites, some members of the Cupressaceae (e.g. *Fitzroya*)

Hook f. ex. Lindl., Pilgerodendron Florin and Austrocedrus Florin et Boutelje) contribute to the Nothofagus emergent tree stratum. On the lower slopes, Nothofagus is joined by emergent Eucryphia with other Cunoniaceae, Monimiaceae, Podocarpaceae (e.g. Podocarpus nubigenus Lindl., Saxegothaea Lindl.) and some Cupressaceae (e.g. Pilgerodendron) forming a mixture of dominant and subdominant trees (Veblen et al., 1983, 1995). Luma and Eucryphia occur as canopy vegetation in low to mid-altitude positions (e.g. <700 m in the case of Luma). The understorey of these forests contains shade-tolerant tree species such as members of the Araliaceae, Lauraceae, Monimiaceae, Proteaceae and Myrtaceae, along with tree ferns, other ferns and members of the Hydrangeaceae which contribute to the scrambling, climbing element of the vegetation. The bamboo, Chusquea Kunth., tends to dominate the modern understorey vegetation in South America (Veblen et al., 1983) but is absent from similar forests in New Zealand and Tasmania. Cvatheaceae, Dicksoniaceae and possibly some Osmundaceae are also found in these lower altitudinal regions where the humidity is relatively high, such as alongside streams. Equisetum also grows in these damp habitats. In undisturbed stands, young or small trees of shade-intolerant species, such as Nothofagus, Eucryphia and some Cunoniaceae are scarce but appear when light penetrates the canopy as a result of fine scale gap dynamics. Such gap dynamics open up the canopy and allow shade-tolerant understorey species to gradually replace scenescing emergent trees (such as Nothofagus), and they may, in turn, ultimately become dominant in the absence of any further disturbance (Veblen et al., 1996). The fern component occurs in a number of different ecological niches. For example, in well-illuminated sites such as forest margins Gleicheniaceae, Schizaeaceae and some Aspleniaceae predominate; whereas Dennstaedtiaceae dominates in similar localities at higher altitude. Blechnaceae, Hymenophyllaceae and other Aspleniaceae favour places with relatively low light regimes.

Post-disturbance vegetation. After widescale disturbances the ensuing plant succession is governed by complex interlinked factors. These include the degree of damage sustained by the forest, initial taxonomic composition of the affected areas, time of year, presence or absence of a nearby regenerative flora, the stability of newly formed slopes, the degree of exposure, and distance from the vent (Veblen et al., 1977; Spicer, 1989). Ferns of light-demanding genera, such as members of the Cyatheaceae and Gleicheniaceae, are good colonizers of ash. Initially, Gunnera also dominates exposed sites in areas subject to relatively high precipitation, along with *Equisetum* (Spicer, 1989; Veblen et al., 1996). Later, however, the pioneer taxa give way to Nothofagus in areas where conditions of constant disturbance favour pure stand Nothofagus growth. Most Nothofagus spp. regenerate well after disturbance which removes the pre-existing vegetation and exposes bare soil. Fires promote vigorous resprouting of certain Nothofagus species, thus enabling them to capitalize on the available light, resulting in even-aged cohorts of shadeintolerant Nothofagus (Veblen and Lorenz, 1987; Burns, 1993). Further away from the volcano, elements of the flora suffering from mass or partial defoliation will releaf and continue to grow.

In South America, in substrates formed by recent glacial deposits such as moraines, supraglacial landslide debris and in-transit moraines, patches of temperate *Nothofagus*-dominated rainforest can establish (Veblen *et al.*, 1989). *Nothofagus* spp. are the initial colonizers of these new deposits along with, or succeeding, the nitrogen-fixing *Gunnera*, and some Ericaceae (*Pernettya* Gaudich) on well-drained sites (Heusser, 1964). *Nothofagus* ultimately becomes dominant in the successional forests, although instability of the in-transit moraines helps prevent canopy closure. This *Nothofagus* colonization is consistent with the ability of certain *Nothofagus* species (e.g. *Nothofagus dombeyi*) to establish on weathered volcanic ash surfaces exposed by landslides in the mid-elevations of the Chilean Andes (Veblen *et al.*, 1989).

Fossil and geological evidence in support of the Valdivian *model.* Disturbance in the Valdivian environment is largely driven by volcanic activity, with eruptions decreasing in severity and frequency further away from any volcanic edifice. Therefore, we would expect vegetation closer to the vent to have a greater abundance of taxa associated with early stages of secondary succession, while vegetation further away would show a higher percentage of climax species. Although glacial activity may have had an overriding effect on floras found in later, i.e. younger, deposits, the Eocene King George Island fossil floras can be constrained to vent proximal or vent distal positions both in time and space by the rock record. This provides a qualitative measure of predicted disturbance frequency and, if the King George Island palaeovegetation is responding to landscape processes in the same way as the Valdivian rainforest, this allows us to predict the types of fossil assemblages that should occur in each palaeoenvironmental setting (Table 3).

On King George Island, stratovolcanic activity is recorded by a thick sequence of lavas (indicative of proximal locations and high disturbance) with intercalated tuffaceous and epiclastic volcanic sediments (indicative of more distal locations and low disturbance). Temporal changes in the rock record appear to relate to either a migration of the stratovolcanic centre, or a shift in the focus of volcanic activity. On Fildes Peninsula, the Late Cretaceous to Early Palaeocene lava dominated strata suggest that the stratovolcano activity was nearby (Smellie et al., 1984; Shen, 1994; Orton, 1996). These are overlain by Palaeocene to Eocene tuffaceous and epiclastic deposits, suggesting that the volcanic centre was either further away or that the focus of the erupting lava had changed (Smellie et al., 1984; Orton, 1996). During the Eocene, King George Island was still a focus for pyroclastic activity and epiclastic sedimentation which gave rise to extensive tuffaceous deposits in which the Collins Glacier Flora was preserved. Forest fires, which could have been associated with volcanic activity, are known to have occurred on King George Island, but to date charcoalified specimens have only been recovered from Point Hennequin and Fossil Hill (Fig. 1) (R.J.H. work in progress).

Migration of either the centre of volcanic activity or a change in the focus of volcanism, such as on Fildes Peninsula, has important implications for vegetational succession since forest stands closer to the site of activity should experience a higher frequency of disturbance than their distal counterparts. The palaeoflora can provide further evidence of a disturbed environment as leaves and pollen are commonly preserved in the Palaeocene-Eocene volcaniclastic sediments of King George Island, although well-preserved fossilized wood is comparatively rare (Birkenmajer and Zastawniak, 1988, 1989).

Ecological disturbance can be inferred from Late Cretaceous floras from this region where the low-density vegetation is dominated by ferns and a relatively small percentage of angiosperms; gymnosperms generally characterize postdisturbance vegetation in proximal volcanic settings (Table 3; Cao, 1992; Dutra and Batten, 2000). On Fildes Peninsula, stratigraphically and geographically preserved vegetation distribution patterns occur. Using the Valdivian Model in relation to the palaeobotanical and geological evidence outlined above, Palaeocene-Eocene ecological disturbance consistent with evidence for fluctuating volcanic activity can be found at Fossil Hill (Shen, 1994), Ardley Island (Orlando, 1964) and in the Collins Glacier Flora described herein (Fig. 49). The sequence at Fossil Hill is 12 m thick and probably represents one single eruptive phase, thus providing evidence for a stratigraphically/ temporally changing environment. A low diversity flora consisting only of *Nothofagus* and podocarps, characteristic of high disturbance, represents the lower part of the sequence, overlying a coarse volcanic debris flow (Fig. 47C). Higher up the sequence, the floral diversity increases, with pteridophytes, conifers-including Araucariaceae, Cupressaceae, Podocarpaceae-and angiosperms, including Nothofagus, Proteaceae, Myrtaceae, ?Araliaceae, Anacardiaceae and Cunoniaceae (Fig. 47A). From the Valdivian Model these latter angiosperm taxa would represent environments of low disturbance. In the uppermost part of the sequence the low diversity Nothofagus assemblages suggest a return to high disturbance environments (Cao, 1994; Li, 1994; Fig. 47B). The Collins Glacier Flora of Middle Eocene age is either contemporaneous or slightly older than the Fossil Hill flora. It is preserved in thick tuffaceous and epiclastic sediments characteristic of a more distal location relative to the volcanic centre. As such, it should have experienced lower levels of disturbance than the Fossil Hill flora, and this is supported by the floral composition. The presence of *Luma* and *Eucryphia* alongside *Nothofagus*, podocarps and Cupressaceae suggests that the flora was relatively diverse and had experienced low or relatively moderate levels of disturbance (Fig. 47A). Based on the modern altitudinal range of Luma and Eucryphia associations, the palaeoforest probably grew at low- to midaltitudes on the flanks of the volcano. On Ardley Island, a flora probably coeval with the Fossil Hill flora includes leaves belonging to the Cupressaceae, Lauraceae, Monimiaceae, Sterculiaceae, Myrtaceae and Proteaceae (Orlando, 1964), and can therefore also be interpreted as a low disturbance vegetation (at least until the time of preservation), probably further from the volcanic activity

I ABLE J	. Theoretical key to palaeovegeta	TABLE 3. Theoretical key to paracovegetation composition based on the modern regenation relationships in the Vatavian tanyoresis and the sequences of restoration observed in modern eruptions	טויףט ווו וווכ דמועוצומות דמות	ioresis unu ine sequences of restoration
R.D.F.	Geological indicators	Plant associations		Predicted fossil assemblages
Low	Lacustrine and fluvial epiclastic sediments common, few primary volcanic sediments and low proportion of lava.	Diverse mixed forest resembling undisturbed all-aged Valdivian forests, with a low proportion High diversity assemblages preserved in of <i>Nothofagus</i> and a high proportion of other angiosperms e.g. Lauraceae, Monimiaceae and lacustrine or fluvial epiclastic sequences. Myrtaceae, <i>Chusquea</i> and fern understorey and subordinate <i>Nothofagus</i> . In proportions of <i>Nothofagus</i> to other shared and the sequences of the sequence of the	orests, with a low proportion Lauraceae, Monimiaceae and thofagus.	High diversity assemblages preserved in lacustrine or fluvial epiclastic sequences. Low proportions of <i>Nothofagus</i> to other shade tolerant angiosperms.
Moderate	Epiclastic and primary volcanic sediments with low to moderate proportion of lavas.	Moderately diverse mixed or patchy forest stands with some shade-tolerant vegetation in parts of the canopy e.g. even-aged senescent <i>Nothofagus, Eucryphia</i> and some members of the Cunoniaceae. Some shade-tolerants including members of the Lauraceae, Monimiaceae and Myrtaceae. <i>Chusquea</i> and fern understorey.	le-tolerant vegetation in parts nd some members of the auraceae, Monimiaceae and	Single bedding planes with mixed character that may show distinct patchy variations in diversity over a wide area.
High	High volume of lava with low proportion of primary volcanic sediments.	 Fire/disturbance adapted angiosperms and Wet Backswar conifers. Even-aged Nothofagus stands with Araucaria, podocarps and ferns. Shade-association intolerants including <i>Eucryphia</i> and some association members of the Cunoniaceae. Some shade-arouses a tolerant angiosperm taxa, <i>Gumera</i>, Dry Below 40 <i>Below</i> 40	Backswamps and on glacial sediments <i>Equisetum</i> , some <i>Nothofagus</i> spp <i>Drimys</i> -Myrtaceae association. Ridge flanks, near river courses and in hollows <i>Tepualia</i> - <i>Pilgerodendron</i> association. Below 400 m on volcanic ash (well- drained) <i>Nothofagus</i> spp. <i>Laurelia</i> , <i>Persea</i> , <i>Aextoxicon</i> association often with podocarps. Associations without <i>Nothofagus</i> . <i>Eucryphia</i> - <i>Aextoxicon</i> - <i>Laurelia</i> -association in areas of high humidity. <i>Eucryphia</i> , <i>Weinmannia</i> , <i>Laurelia</i> association at altitudes up to 350 m.	Basal sequences containing pre-disturbance vegetation (potentially disturbed or possibly undisturbed). Overlain by <i>Gumera</i> , <i>Equisetum</i> and fern rich 'opportunistic colonization' horizon. Upper sequences containing low diversity even-aged <i>Nothofagus</i> dominated assemblages with <i>Araucaria</i> , conifers and ferns.

RDF, Relative disturbance frequency.

TABLE 3. Theoretical key to palaeovegetation composition based on the modern vegetation relationships in the Valdivian rainforests and the sequences of restoration

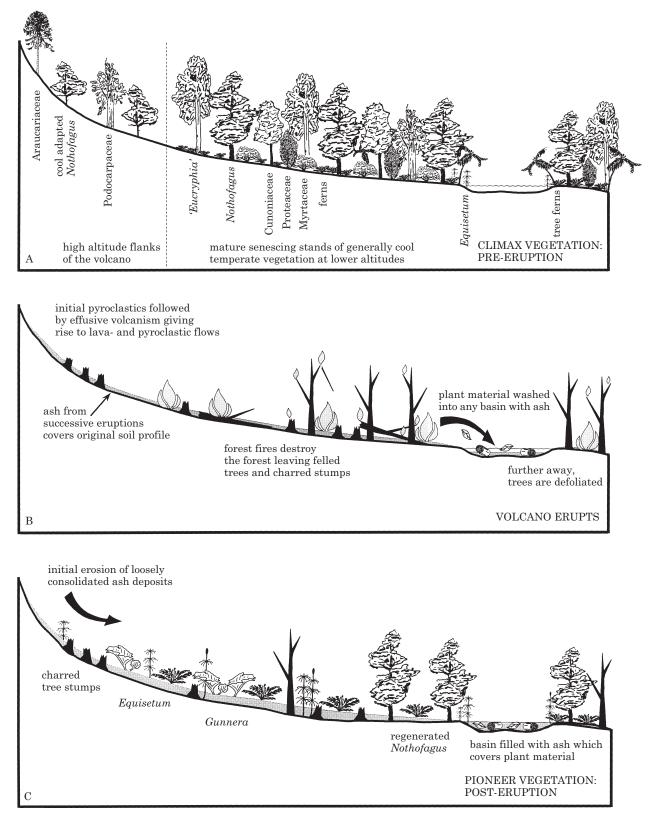


FIG. 47. Reconstructions of the vegetational succession along a transect of Fildes Peninsula from the high altitudinal (proximal) flanks of the volcanoes to the lower (more distal) altitudes derived from the palaeoflora and the Valdivian Model. **A**, climax vegetation composed mainly of cool temperate elements but some warmer temperate elements, such as Proteaceae, present; **B**, immediately post-disturbance, for example, a volcanic eruption with ash deposits, fires and tectonic movements which devastate the surrounding landscape; **C**, post-eruption pioneer vegetation of ferns, *Gunnera, Equisetum* and resprouting *Nothofagus* which will, in time, return to the climax vegetation. See text for further details.

than either the Fossil Hill flora or the Collins Glacier Flora (Fig. 47A). Cyatheaceae, Dicksoniaceae and some Osmundaceae all occur in the micro- and macrofossil records on Fildes Peninsula at this time and these probably formed an understorey with shrubby angiosperms such as the Proteaceae. Interestingly, fossil evidence for *Chusquea* on King George Island is limited to one Oligocene pollen record (Stuchlik, 1981). Therefore, perhaps ferns, ubiquitous in the palaeoflora (Zhou and Li, 1994b), filled this niche as they do in the *Nothofagus*-dominated forests of New Zealand and Tasmania, if indeed an ecological equivalent exists today.

CONCLUSIONS

Seven morphotypes of fossil wood have been found on Fildes Peninsula, King George Island. *Cupressinoxylon* represents the dominant conifer, in terms of number of specimens, with a subsidiary podocarp component. Two new records of *Nothofagoxylon* have been documented: a new species, *Nothofagoxylon corrugatus*, and *Nothofagoxylon neuquenense* previously only found in the Tertiary flora of South America. Fossil wood with closest anatomical similarity to *Eucryphia* (today found in South America and Tasmania) and *Luma* (found only in South America. This paper documents the first fossil evidence for nothofagaceous material occurring in association with eucryphiaceous and myrtaceous woods in Antarctica.

Elements within the Collins Glacier Flora have a disjunct distribution across the Southern Hemisphere, but in terms of overall vegetational similarity, the closest modern analogue is the low- to mid-altitudinal cool temperate Valdivian rainforests of southern Chile. Past dominance of Nothofagus could have indicated a shift towards a less favourable climate for other tree species (cf. occurrence of Nothofagus in drier sites east of the Andes such as those at high elevations, or with poor drainage; Veblen et al., 1996); but the Valdivian Model has been put forward to explain the ecological changes seen in the Palaeocene-Eocene King George Island floras as the geological and palaeobotanical evidence supports volcanic disturbance in equable, favourable habitats dominated by taxa found in modern Valdivian rainforest ecosystems. Some care must be taken when applying this model, since accurate interpretations of vegetational succession require fine-scale bedding plane, or at least time-equivalent, observations of the fossil floras, which are currently lacking. Climatic or taphonomic interpretations, often used to explain changes in floral composition and diversity, can now be refined in light of this model of vegetation dynamics. With greater understanding and application, the model will allow Antarctic floras to be used as a tool for more precise interpretation of the palaeoclimate, vegetational succession and frequency of disturbance. As more fossils are uncovered and identified, and with further clarification of the stratigraphy, ideas concerning Antarctic vegetation and the Valdivian Model can be refined as this unique ecosystem becomes more fully understood.

ACKNOWLEDGEMENTS

We thank the British Antarctic Survey for the loan of the fossil wood specimens and the invitation to R.J.H. to collect further plant material from King George Island. Drs P. Rudall and H.G. Richter are thanked for allowing continued access to the wood slide collections housed in the Jodrell Laboratory, Royal Botanic Gardens, Kew, UK, and the Federal Institute of Wood Biology and Wood Protection, Hamburg, Germany, respectively. Drs M. Gardner, S. Knees and C.N. Page are thanked for invaluable discussions on Valdivian rainforest community structure. Drs H. Wilkinson and A.M.W. Mennega are thanked for providing modern Nothofagus sections used in comparisons. Professors R.S. Hill and T.T. Veblen are thanked for their thorough reviews. Professor R.S. Hill and Dr G. Jordan are acknowledged for collecting modern Eucryphia lucida material, and Dr J. Francis is thanked for her continued support. This research was undertaken whilst R.J.H. was in receipt of a NERC CASE studentship which is gratefully acknowledged.

LITERATURE CITED

- Askin RA. 1992. Late Cretaceous-early Tertiary Antarctic outcrop evidence for past vegetation and climates. *Antarctic Research Series* 56: 61–73.
- Barton CM. 1964. Significance of Tertiary fossil floras of King George Island, South Shetland Islands. In: Adie RJ, ed. Antarctic geology—proceedings of the first international symposium on antarctic geology, Cape Town, 1963. Amsterdam: North Holland Publishing Company, 603–608.
- Birkenmajer K, Zastawniak E. 1986. Plant remains of the Dufayel Island Group (Early Tertiary?), King George Island, South Shetland Islands (West Antarctica). Acta Palaeobotanica 26: 33–49.
- Birkenmajer K, Zastawniak E. 1988. Late Cretaceous–Early Neogene history of the Antarctic Peninsula Sector. Gondwana break-up and Tertiary glaciations. *Bulletin of the Polish Academy of Sciences, Earth Sciences* 37: 63–88.
- Birkenmajer K, Zastawniak E. 1989. Late Cretaceous–Early Tertiary floras of King George Island, West Antarctica: their stratigraphic distribution and palaeoclimatic significance. In: Crame JA, ed. Origins and evolution of the Antarctic biota. Geological Society Special Publications 47: 217–226.
- Burnham RJ. 1994. Plant deposition in modern volcanic environments. Transactions of the Royal Society of Edinburgh Earth Sciences 84: 275–281.
- Burnham RJ, Spicer RA. 1986. Forest litter preserved by volcanic activity at El Chichón, Mexico: A potentially accurate record of the pre-eruption vegetation. *Palaios* 1: 158–161.
- Burns BR. 1993. Fire-induced dynamics of Araucaria araucana-Nothofagus antarctica forest in the southern Andes. Journal of Biogeography 20: 669–685.
- Cao L. 1992. Late Cretaceous and Eocene palynofloras from Fildes Peninsula, King George Island (South Shetland Islands), Antarctica. In: Yoshida Y, ed. *Recent progress in Antarctic earth science*. Tokyo: Terra Scientific Publishing Company (Terrapus), 363–369.
- Cao L. 1994. Late Cretaceous palynoflora in King George Island of Antarctica with reference to its palaeoclimatic significance. In: Shen Y, ed. Stratigraphy and palaeontology of Fildes Peninsula, King George Island. State Antarctic Committee Monograph 3. China: Science Press, 76–83.
- Carlquist S. 1987. Pliocene Nothofagus wood from the Transantarctic Mountains. Aliso 11: 571–583.
- Carlquist S. 1988. Comparative wood anatomy systematic ecological and evolutionary aspects of dicotyledon wood. Berlin: Springer Verlag.

- Case JA. 1988. Paleogene floras from Seymour Island, Antarctic Peninsula. In: Feldmann RM, Woodburne MO, eds. Geology and palaeontology of Seymour Island, Antarctic Peninsula. Geological Society of America Memoir 169: 523–529.
- Cozzo D. 1950. Estudio del leño fosil de una dicotiledonea de la Argentina Nothofagoxylon neuquenense. Comunicaciones del Instituto Nacionale de Investigacion de las Ciencias Naturales 1: 3–12.
- Cutler DF, Gregory M. 1998. Anatomy of the dicotyledons. Volume IV. Saxifragales. Oxford: Claredon Press.
- Czajkowski S, Rosler O. 1986. Plantas fosseis da Peninsula Fildes; Ilha Rei Jorge (Shetlands do Sul); Morfografia das impressoes foliares. Anais Academia Brasileira de Ciencias Supplemento 58: 99–110.
- Davies RES. 1982. New geological interpretation of Admiralen Peak, King George Island, South Shetland Islands. *British Antarctic Survey Bulletin* 51: 294–296.
- Del Valle RA, Diaz MT, Romero EJ. 1984. Preliminary report on the sedimentites of Barton Peninsula, 25 de Mayo Island (King George Island), South Shetland Islands. Argentine Antarctica. *Instituto Antartico Argentino Contribution* **308**: 121–131.
- Dettmann ME. 1989. Antarctica: Cretaceous cradle of austral temperate rainforests? In: Crame JA, ed. Origins and evolution of the Antarctic biota. Geological Society Special Publications 47: 89–105.
- Dickison WC. 1978. Comparative anatomy of Eucryphiaceae. American Journal of Botany 65: 722–735.
- Dingle RV, Lavelle M. 1998. Late Cretaceous-Cenozoic climatic variations of the northern Antarctic Peninsula: new geochemical evidence and review. *Palaeogeography, Palaeoclimatology and Palaeoecology* 141: 215–232.
- Ditchfield PW, Marshall JD, Pirrie D. 1994. High latitude palaeotemperature data from the Tithonian to Eocene of James Ross Island, Antarctica. *Palaeogeography, Palaeoclimatology, Palaeoe*cology 107: 79–101.
- Duan W, Cao L. 1998. Late Palaeogene palynoflora from Point Hennequin of the Admiralty Bay, King George Island, Antarctica with reference to its stratigraphical significance. *Chinese Journal of Polar Science* 9: 125–132.
- Dusén P. 1908. Über die Tertiäre Flora der Seymour Insel. Wissenschaftliche Ergebnisse der Schwedischen Südpolar Expedition 1901–1903 3: 1–27.
- Dutra T. 1989a. A tafoflora terciária dos arredores do pontal block, Baía do Almirantado, Ilha Rei George (Arquipelago das Shetland do Sul Península Antártica). Acta Geologica Leopoldensia 28: 45–90.
- Dutra T. 1989b. Informações preliminares sobre a tafoflora do Monte Zamek (Bahía do Almirantado Ilha Shetland do Sul), Antártica. Serie Cientifica Instituto Àntartico Chileno 39: 31–42.
- Dutra T, Batten D. 2000. Upper Cretaceous floras of King George Island, West Antarctica and their palaeoenvironmental and phytogeographic implications. *Cretaceous Research* 21: 181–209.
- Fensterseifer HC, Soliani E, Hansen MAF, Troian FL. 1988. Geología e estratigrafía da associação de rochas do setor centro-norte da peninsula Fildes, Ilha Rei George, Shetland do Sul, Antártica. Serie Cientifica Instituto Àntartico Chileno 38: 29–43.
- Francis JE. 1996. Antarctic palaeobotany: Clues to climate change. Terra Antartica 3: 135–140.
- Goeppert HR. 1850. Monographie der fossilen Coniferen. Hollandsche Maatschappÿ Wetenschappen Natuurkundige Verhandlingen 6: 1–286.
- Gothan W. 1908. Die fossilen Hölzer von der Seymour- und Snow Hill-Insel. Wissenschaftliche Ergebnisse der Schwedischen Südpolar Expedition 1901–1903 3: 1–33.
- Gottwald H. 1966. Eozäne Hölzer aus der Braunkohle von Helmstadt. Palaeontographica Abteilung B 119: 76–93.
- Hass H, Rowe NP. 1999. Thin sections and wafering. In: Jones TP, Rowe NP, eds. Fossil plants and spores: modern techniques. London: Geological Society, 76–81.
- Hee YC, Soon KC. 1991. Study on the gymnospermous fossil woods from the King George Island. *Korean Journal of Polar Research* 2: 179–185.
- Heusser CJ. 1964. Some pollen profiles from the Laguna de San Rafael area, Chile. In: Cranwell LM, ed. Ancient Pacific floras. Honolulu: University of Hawaii Press, 95–114.

- Hill RS. 1991. Leaves of *Eucryphia* (Eucryphiaceae) from Tertiary sediments in south-eastern Australia. *Australian Systematic Botany* 4: 481–497.
- Hill RS, Scriven LJ. 1995. The angiosperm dominated woody vegetation of Antarctica: a review. *Review of Palaeobotany and Palynology* 86: 175–198.
- IAWA Committee. 1989. IAWA list of microscopic features for hardwood identification. *International Association of Wood Anatomists Bulletin* 10: 219–332.
- **Ilic J. 1987.** *The CSIRO family key for hardwood identification.* Leiden: EJ Brill.
- **Ilic J. 1991.** *CSIRO atlas of hardwoods.* Australia: Crawford House Press and CSIRO Publications.
- Kramer K. 1974. Die Tertiären Hölzer Südoest-Asiens. Palaeontographica Abteilung B 144: 45–181; 145: 1–150.
- LaPasha CA, Wheeler EA. 1987. A microcomputer based system for computer-aided wood identification. *International Association of Wood Anatomists Bulletin* 8: 347–354.
- Lawver LA, Gahagan LM, Millard FC. 1992. The development of paleoseaways around Antarctica. In: Kennet JP, Warnke DA, eds. *The Antarctic Paleoenvironment: a perspective on global change. Antarctic Research Series* 56: 7–30.
- Li HM. 1992. Early Tertiary palaeoclimate of King George Island, Antarctica—evidence from the Fossil Hill Flora. In: Yoshida Y, ed. *Recent progress in Antarctic earth science*. Tokyo: Terra Scientific Publishing Company (Terrapus), 371–375.
- Li HM. 1994. Early Tertiary Fossil Hill flora from Fildes Peninsula of King George Island, Antarctica. In: Shen Y, ed. Stratigraphy and palaeontology of Fildes Peninsula, King George Island. State Antarctic Committee Monograph 3: 133–171.
- Li HM, Shen Y. 1989. A primary study of the Eocene flora from the Fildes Peninsula of King George Island, Antarctica. *Acta Palaeontologica Sinica* 29: 147–153.
- Lucas RC, Lacey WS. 1981. A permineralized wood flora of probable Tertiary age from King George Island, South Shetland Islands. *British Antarctic Survey Bulletin* 53: 147–151.
- Lyra CS. 1986. Palinologia de sedimentos Terciários da Península Fildes, Ihla Rei George (Ihla Shetland do Sul Antártica) e Algumas Conciderações Paleoambientais. Anais da Academia Brasileria de Ciências (supplemento) 58: 137–147.
- Markgraf V, Romero E, Villagrán C. 1996. History and palaeoecology of South American Nothofagus forests. In: Veblen TT, Hill RS, Read J, eds. The ecology and biogeography of Nothofagus forests. New Haven and London: Yale University Press, 354–386.
- Metcalfe CR. 1987. Anatomy of the dicotyledons: Volume III. Magnoliales, Illiciales and Laurales 2nd edn. Oxford: Claredon Press.
- Metcalfe CR, Chalk L. 1950. Anatomy of the dicotyledons. Volumes I & II. Oxford: Claredon Press.
- Metcalfe CR, Chalk L. 1989. Anatomy of the dicotyledons. Volume II. Wood structure and conclusion of the general introduction 2nd edn. Oxford: Claredon Press.
- Nishida M. 1984. The anatomy and affinities of the petrified plants from the Tertiary of Chile III. Petrified woods from Mocha Island, Central Chile. In: Nishida M, ed. *Contributions to the botany of the Andes I.* Tokyo: Academia Scientific Book Inc., 96–110.
- Nishida M, Nishida H, Nasa T. 1988. Anatomy and affinities of the petrified plants from the Tertiary of Chile V. *Botanical Magazine* of Tokyo 101: 293–309.
- **Orlando HA. 1963.** La flora fosil en las imediaciones de la Peninsula Ardley, Isla 25 de Mayo, Islas Shetlands del Sur. *Instituto Antártico Argentino* **79**: 3–17.
- **Orlando HA. 1964.** The fossil flora of the surroundings of Ardley Peninsula (Ardley Island), 25 de Mayo Island (King George Island) South Shetland Islands. In: Adie RJ, ed. *Antarctic geology*. Amsterdam: North Holland Publishing Company, 629–636.
- **Orton GJ. 1996.** Volcanic environments. In: Reading HG, ed. *Sedimentary environments: Processes, facies and stratigraphy.* Oxford: Blackwell Science, 485–567.
- Palma-Heldt S. 1987. Estudio palinologico en el Terciario de islas Rey Jorge y Brabante, territorio insular Antartico. Serie Científica Instituto Àntartico Chileno 36: 59–71.

- Pankhurst RJ, Smellie JL. 1983. K-Ar geochronology of the South Shetland Islands, Lesser Antarctica: apparent lateral migration of Jurassic to Quaternary island arc volcanism. *Earth and Planetary Science Letters* 66: 214–222.
- Patel RN. 1986. Wood anatomy of the dicotyledons indigenous to New Zealand 15. Fagaceae. New Zealand Journal of Botany 24: 189–202.
- Petriella B. 1972. Estudio de maderas petrificadas del Tertiario inferior del area central de Chubut (Cerro Bororo). Revista del Museo de la Plata Sección Paleontología n.s. 6: 159–254.
- Pons D, Vicente J-C. 1985. Découverte d'un bois fossile de Fagaceae dans la formation Farellones (Miocéne) des Andes d'Aconcagua (Chili): importance paléobotanique et signification paléo-orographique. Actes du 110^e Congrès National des Sociétés Savantes Section des Sciences 5: 187–207.
- Poole I, Cantrill DJ. 2001. Fossil woods from Williams Point Beds, Livingston Island, Antarctica: a Late Cretaceous southern high latitude flora. *Palaeontology* (in press).
- Poole I, Cantrill DJ, Hayes P, Francis JE. 2000. The fossil record of Cunoniaceae: new evidence from Late Cretaceous wood of Antarctica. *Review of Palaeobotany and Palynology* 111: 127–144.
- Ragonese AM. 1980. Leños fosiles de dicotiledoneas del Paleoceno de Patagonia, Argentina I. Myrceugenia chubutense n. sp. (Myrtaceae). Ameghiniana 17: 297–311.
- Rancusi M, Nishida M, Nishida H. 1987. Xylotomy of important Chilean woods. In: Nishida M, ed. *Contributions to the botany of the Andes II*. Tokyo: Academia Scientific Book Inc., 68–154.
- Read J, Brown MJ. 1996. Ecology of Australian Nothofagus forests. In: Veblen TT, Hill RS, Read J, eds. The ecology and biogeography of Nothofagus forests. New Haven and London: Yale University Press, 131–181.
- Shen Y. 1994. Subdivision and correlation of Cretaceous to Paleogene volcano-sedimentary sequence from Fildes Peninsula, King George Island, Antarctica. In: Shen Y, ed. Stratigraphy and palaeontology of Fildes Peninsula, King George Island. State Antarctic Committee Monograph 3: 1–36.
- Shen Y. 1999. Subdivision and correlation of the Eocene Fossil Hill Formation from King George Island, West Antarctica. Korean Journal of Polar Research 10: 91–95.
- Smellie JL, Pankhurst RJ, Thomson MRA, Davies RES. 1984. The geology of the South Shetland Islands: VI. Stratigraphy, geochemistry and evolution. *British Antarctic Survey, Scientific Report* 87: 1–85.
- Soliani E, Kawashita K, Fensterseifer H, Hansen MA, Troian F. 1988. K-Ar ages of the Winkel Point Formation (Fildes Peninsula Group) and associated intrusions, King George Island, Antarctica. Serie Científica Instituto Antartico Chileno 38: 133–139.
- Spicer RA. 1989. The formation and interpretation of plant fossil assemblages. Advances in Botanical Research 16: 96–191.
- Stuchlik L. 1981. Tertiary pollen spectra from the Ezcurra Inlet Group of Admiralty Bay, King George Island (South Shetland Islands, Antarctica). *Studia Geologica Polonica* 72: 109–132.
- Taylor F, Hill RS. 1996. A phylogenetic analysis of the Eucryphiaceae. Australian Systematic Botany 9: 735–748.
- Tokarski AK, Danowski W, Zastawniak E. 1987. On the age of the fossil flora from Barton Peninsula, King George Island, West Antarctica. *Polish Polar Research* 8: 293–302.
- **Torres T. 1984.** Nothofagoxylon antarcticus n. sp., madera fósils del Terciario de la isla Rey Jorge, islas Shetland del Sur, Antártica. Serie Cientifica Instituto Àntartico Chileno **31**: 39–52.
- Torres T. 1985. Plantas fosiles en la Antártica. *Boletin Àntartico Chileno* 5: 17–31.
- Torres T. 1990. Etude Palaeobotanique du Tertiare des Iles Roi Georges et Seymour, Antarctique. PhD Thesis, Université Lyon, France.
- Torres T, Lemoigne Y. 1988. Maderas fósiles terciarias de la Formación Caleta Arctowski, Isla Rey Jorge, Antártica. Serie Científica Instituto Àntartico Chileno 37: 69–107.
- Torres T, Meon H. 1990. Estudio palinologico de Cerro Fosil, peninsula Fildes, isla Rey Jorge, Antártica. Serie Científica Instituto Antartico Chileno 40: 21–39.

- Torres T, Meon H. 1993. Lophosoria del Terciario de isla Rey Jorge y Chile Central: origen y dispersión en el hemisferio Sur. Serie Cientifica Instituto Àntartico Chileno 43: 17–30.
- Torres T, Román A, Deza A, Rivera C. 1984. Anatomiá, mineralogía y termoluminiscencia de madera fósil del Terciario de la isla Rey Jorge, Islas Shetland del Sur. *III Congreso Latinoamericano de Paleontologia Brasil* 2: 566–574.
- Troncoso A. 1986. Nuevas organo-especies en la tafoflora Terciaria Inferior de peninsula Fildes, isla Rey Jorge, Antartica. Serie Cientifica Instituto Àntartico Chileno 34: 23–46.
- **Truswell EMI. 1990.** Cretaceous and Tertiary vegetation of Antarctica: A palynological perspective. In: Taylor TN, Taylor EL, eds. *Antarctic palaeobiology: its role in the reconstruction of Gondwana.* Berlin: Springer Verlag, 71–88.
- Veblen TT, Ashton DH. 1978. Catastrophic influences on the vegetation of the Valdivian Andes, Chile. Vegetatio 36: 149–167.
- Veblen TT, Lorenz DC. 1987. Post-fire stand development of Austrocedrus-Nothofagus forests in northern Patagonia. Vegetatio 71: 113–126.
- Veblen TT, Schlegel FM, Oltremari JV. 1983. Temperate broad-leaved evergreen forests of South America. In: Ovington JD, ed. *Ecosystems of the World 10. Temperate broad-leaved evergreen* forests. Amsterdam: Elsevier, 5–31.
- Veblen TT, Ashton DH, Schlegel FM, Veblen AT. 1977. Plant succession in a timberline depressed by vulcanism in south-central Chile. Journal of Biogeography 4: 275–294.
- Veblen TT, Donoso CZ, Schlegel FM, Escobar BR. 1981. Forest dynamics in south-central Chile. *Journal of Biogeography* 8: 211–247.
- Veblen TT, Ashton DH, Rubulis S, Lorenz DC, Cortes M. 1989. Nothofagus stand development on in-transit moraines, Casa Pangue Glacier, Chile. Arctic and Alpine Research 21: 144–155.
- Veblen TT, Burns BR, Kitzberger T, Lara A, Villalba R. 1995. The ecology of the conifers of southern South America. In: Enright N, Hill RS, eds. *Ecology of the southern conifers*. Melbourne: Melbourne University Press, 120–155.
- Wheeler EA, Pearson RG, LaPasha CA, Zack T, Hatley W. 1986. Computer-aided wood identification. Raleigh: North Carolina Agricultural Research Service Bulletin 474.
- Xue Y, Shen Y, Zhuo E. 1996. Petrological characteristics of the sedimentary volcaniclastic rocks of the Fossil Hill Formation (Eocene) in King George Island, West Antarctica. *Antarctic Research* 7: 99–117.
- Zachos JC, Lohmann KC, Walker JCG, Wise SW. 1993. Abrupt climate change and transient climates during the Paleogene: a marine perspective. *Journal of Geology* 101: 191–213.
- Zastawniak E. 1981. Tertiary leaf flora from the Point Hennequin Group of King George Island (South Shetland Islands) Antarctica Preliminary report. *Studia Geologica Polonica* 72: 97–112.
- Zastawniak E. 1994. Upper Cretaceous leaf flora from the Blaszyk Moraine (Zamek Formation), King George Island, South Shetland Islands, West Antarctica. *Acta Palaeobotanica* 34: 119–163.
- Zastawniak E, Wrona R, Gazdzicki A, Birkenmajer K. 1985. Plant remains from the top part of the Point Hennequin Group (Upper Oligocene), King George Island (South Shetland Islands, Antarctica). *Studia Geologica Polonica* 81: 143–164.
- Zhang S, Wang Q. 1994. Palaeocene petrified wood on the west side of Collins glacier in the King George Island, Antarctica. In: Shen Y, ed. Stratigraphy and palaeontology of Fildes Peninsula King George Island, Antarctica, State Antarctic Committee Monograph 3. China: Science Press, 231–238.
- Zhou Z, Li H. 1994a. Early Tertiary gymnosperms from Fildes Peninsula, King George Island, Antarctica. In: Shen Y, ed. Stratigraphy and palaeontology of Fildes Peninsula, King George Island, State Antarctic Committee Monograph 3. China: Science Press, 191–221.
- Zhou Z, Li H. 1994b. Early Tertiary ferns from Fildes Peninsula, King George Island, Antarctica. In: Shen Y, ed. Stratigraphy and palaeontology of Fildes Peninsula, King George Island, State Antarctic Committee Monograph 3. China: Science Press, 173–189.