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A Flexible Sigmoid Function of Determinate Growth
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A new empirical equation for the sigmoid pattern of determinate growth, `the beta growth function', is pre-
sented. It calculates weight (w) in dependence of time, using the following three parameters: tm, the time at
which the maximum growth rate is obtained; te, the time at the end of growth; and wmax, the maximal value for
w, which is achieved at te. The beta growth function was compared with four classical (logistic, Richards,
Gompertz and Weibull) growth equations, and two expolinear equations. All equations described successfully
the sigmoid dynamics of seed ®lling, plant growth and crop biomass production. However, differences were
found in estimating wmax. Features of the beta function are: (1) like the Richards equation it is ¯exible in
describing various asymmetrical sigmoid patterns (its symmetrical form is a cubic polynomial); (2) like the
logistic and the Gompertz equations its parameters are numerically stable in statistical estimation; (3) like the
Weibull function it predicts zero mass at time zero, but its extension to deal with various initial conditions can
be easily obtained; (4) relative to the truncated expolinear equation it provides more reasonable estimates of
®nal quantity and duration of a growth process. In addition, the new function predicts a zero growth rate at both
the start and end of a precisely de®ned growth period. Therefore, it is unique for dealing with determinate
growth, and is more suitable than other functions for embedding in process-based crop simulation models to des-
cribe the dynamics of organs as sinks to absorb assimilates. Because its parameters correspond to growth traits
of interest to crop scientists, the beta growth function is suitable for characterization of environmental and geno-
typic in¯uences on growth processes. However, it is not suitable for estimating maximum relative growth rate to
characterize early growth that is expected to be close to exponential. ã 2003 Annals of Botany Company
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INTRODUCTION

Most annual agricultural crops are determinate, and their
growth stops once they reach physiological maturity. For
indeterminate crops, growth of their individual organs is not
unlimited, even when environmental conditions remain
favourable. The length of the growth period and the weight
of ultimate growth, either for the determinate crop as a
whole or for speci®c organs, are two important environ-
ment-dependent traits. Crop physiologists and geneticists
like to quantify the two traits to characterize genotypic
variation in response to growth environments, thereby
assisting breeders in the design of crop varieties for target
environments. In plant simulation modelling, modellers
often wish to quantify the dynamics of growth, enabling the
daily growth rates being integrated to equal the expected
ultimate weight at the end of the growing cycle (Read et al.,
2002). A simple equation is needed to model and
characterize the duration and the ®nal weight of determinate
growth processes.

Within the life cycle of an organ, a plant or a crop, the
total growth duration can be divided into three sub-phases:
an early accelerating phase; a linear phase; and a saturation
phase for ripening (Goudriaan and van Laar, 1994).
Therefore, the growth pattern typically follows a sigmoid
curve, and the growth rate a bell-shaped curve. While the
sigmoid pattern can be represented piecewise using an
exponential, a linear and a convex equation sequentially

(e.g. Lieth et al., 1996), a more elegant way is to use a
curvilinear equation which gives a gradual transition from
one phase to the next. For example, based on principles of
light interception and leaf area expansion, Goudriaan and
Monteith (1990) derived a single equation, the expolinear
equation, for both the exponential and linear phases of crop
growth:

w � cm

rm

1n�1� erm�tÿto�� �1�

where w is mass, t is time, to is the moment at which
the linear phase effectively begins, and cm and rm are
maximum growth rate in the `linear phase' and
maximum relative growth rate (RGR) in the `exponential
phase', respectively. To represent a de¯ection in growth
towards the third phase, Goudriaan and Monteith (1990)
suggested the truncated curve that terminates growth at
the moment to + wmax/cm, where wmax is the maximum
value of w. This truncation creates an abrupt transition
from the second to third phase, and predicts no growth
at all during the third phase.

Goudriaan (1994) extended the expolinear equation for
describing the pattern of leaf area index to allow a smooth
second transition. The principle could also be applied to
mass quantity. The expolinear equation with two smooth
transitions is:* For correspondence. e-mail: Xinyou.Yin@wur.nl
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Equation (2) gives a symmetrical sigmoid pattern around
time to + wmax/(2cm). To distinguish it from the truncated
equation, eqn (2) is referred to as the symmetrical
expolinear function.

Alternative, but simpler, functions that can produce two
smooth transitions in a single formula are the classical
growth functions. The ®rst is the well-known logistic
function (Verhulst, 1838):

w � wmax

1� eÿk�tÿtm� �3�

where k is a constant that determines the curvature of the
growth pattern, and tm is the in¯ection point at which
the growth rate reaches its maximum value. At time tm, the
RGR is k/2. As can be seen from eqn (3), the weight at tm is
half of its maximum value, wmax.

The logistic equation is symmetrical around time tm.
Richards (1959) introduced an additional parameter, v,
to the logistic equation to deal with asymmetrical
growth:

w � wmax

�1� veÿk�tÿtm��1=v
�4�

At time tm, the absolute growth rate is maximal and the RGR
is k/(1 + v). Equation (4) differs slightly from the original
notation: by putting v in front of the exponential term the
awkward 6 conditional notation can be avoided (Goudriaan
and van Laar, 1994). Clearly, eqn (4) becomes the logistic
equation if v = 1.

The asymmetrical growth provided by the Richards
equation [eqn (4)] is obtained at the cost of using one more
parameter than is used in the logistic function. An alterna-
tive way to generate an asymmetrical growth curve is to use
the Gompertz function (Gompertz, 1825; Winsor, 1932),
which has only three parameters:

w � wmaxeÿeÿk�tÿtm� �5�

Equation (5) predicts that at the time of in¯ection, tm, when
the maximum growth rate is achieved, w is equal to wmax/e,
and the RGR is equal to k. In fact, the Gompertz function is a
special form of the Richards function when v ® 0. This can
be easily understood from the mathematical formula of
approximation: 1 + x » ex if x ® 0.

All of the above equations have the line w = 0 as their
lower asymptote of sigmoid growth and, therefore, predict a
positive non-zero value for w at time t = 0. This is the case
for a germinating plant or at the start of the growing season

for a crop, but is not the case for some individual organs, e.g.
seeds, which start with an initial weight of zero. A zero
initial weight can be achieved by applying the Weibull
function (Weibull, 1951):

w � wmax�1ÿ eÿatb� �6�

where a and b are empirical constants, de®ning the shape of
the response. Equation (6) differs slightly from the notation
of the Weibull function for germination analysis (Dumur
et al., 1990), which generally includes a parameter for a lag
time.

In eqns (2)±(6), wmax is a parameter to be speci®ed.
However, none of these equations can explicitly predict an
actual weight equal to wmax because they all have the line
w = wmax as their upper asymptote when time tends to
in®nity. As a consequence, the length of the growth period is
in®nite in these equations, contravening the pattern of
determinate growth. To achieve a set ®nal weight at the end
of a precisely de®ned growth period, a segmented terminate
function is needed. While the truncated expolinear function
can predict the ®nal weight, it uses an abrupt transition and
predicts a `sudden death'. To predict a smooth transition to
the maximum weight, a non-linear segment function that
has a zero slope at the end of growth is required. Although
cubic polynomials provide a zero slope at the end point, they
are symmetrical, presenting a growth pattern with the
maximum slope midway through the growing season. In
addition, the coef®cients of polynomial equations have no
biological interpretation.

The aim of the present study is to present a new ¯exible
asymmetrical sigmoid growth function, with clearly inter-
pretable parameters, that can specify unambiguously the
length of the growth period and smoothly predict wmax, the
®nal weight of the determinate growth process.

MATERIALS AND METHODS

New growth function

The time course of the growth rate usually follows a
unimodal bell-shaped curve. To predict determinate growth,
the growth rate has to be zero at the end point. This
terminate growth pattern can be described by the beta
distribution function, the probability density function that
gives a family of ¯exible asymmetrical unimodal curves
with two ®xed end points (Johnson and Leone, 1964). The
beta function was introduced by Yin et al. (1995) to describe
the phasic development rate as a function of temperature. In
analogy to the equation given by Yin et al. [1995; their
equation (8b)], the full beta function for growth rate can be
expressed as:

dw

dt
� cm

te ÿ t

te ÿ tm

� �
t ÿ tb

tm ÿ tb

� �tmÿtb
teÿtm

" #�
�7�
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where cm is the maximum growth rate, which is achieved at
time tm, and tb and te are times at the beginning and end of
the growth period, respectively. If the reference time is set
as zero (tb = 0), eqn (7) becomes simpler. By varying the
parameter d, various curvatures in the growth rate curve for
the periods t < tm and t > tm can be produced (Yin et al.,
1995).

Growth equations are usually presented in an integral
form (Zeide, 1993) because instantaneous growth rates are
not amenable to experimental collection. The equation for
total weight in the present context can be obtained by
integrating eqn (7) with respect to time t. However, a
de®nite analytical solution to the integral of eqn (7) does not
exist. Therefore, a simpli®cation has to be made to arrive at
a de®nite integral growth equation. To achieve such a
general growth function which, like most existing growth
functions, has only three parameters, we simply assume that
parameter d is equal to 1 [see eqn (A1) in Appendix].
Equation (A1) is equivalent to the beta equation for the
temperature response of development rate, as simpli®ed by
Yan and Hunt (1999).

Based on eqn (A1), a new three-parameter growth
equation, with an initial weight of zero, can be formulated
as (see Appendix):

w � wmax 1� te ÿ t

te ÿ tm

� �
t

te

� � te
teÿtm

with 0 � tm < te �8�

where wmax is the maximum value of w, which is reached at
time te.

Equation (8) obeys the constraints that w = 0 at the start of
growth (i.e. t = 0), and w = wmax when growth is terminated
(i.e. t = te). It can be applied to growth within the time span
of 0 < t < te; otherwise, w has to be set as 0 if t < 0, and wmax

if t > te. Because eqn (8) still produces an asymmetrical
unimodal curve if te is exceeded (Fig. 1A), the equation with
the extension that w is wmax if t > te is referred to as the beta
sigmoid growth function. Unlike the truncated expolinear
function, the beta growth function, whilst containing two
segments, is smooth because the ®rst derivatives of w with
respect to t are zero at the joining point t = te.

It is customary to give corresponding expressions for both
absolute and relative growth rates associated with a growth
equation. The beta growth rate function is presented as eqn
(A1) where the maximum growth rate, cm, is given by:

cm � 2te ÿ tm

te�te ÿ tm�
tm

te

� � tm
teÿtm

wmax �9�

The equation for RGR is given by:

1

w

dw

dt
� �2te ÿ tm��te ÿ t�
�te ÿ tm��2te ÿ tm ÿ t�t �10�

A typical time course of both absolute and relative growth
rates is given in Fig. 1B. Because w is initially assumed to
be zero (as in the Weibull equation), RGR is in®nite at the
start of growth; it then declines monotonically to zero at
time te. Thereafter, both rates remain zero due to the
restriction that w is wmax if t > te.

Comparison with some existing growth equations

The beta growth function is compared with the four
widely used classical equations (logistic, Richards,
Gompertz and Weibull) and the two expolinear equations
in describing several growth processes. Parameters in all of
the functions were derived from iterative non-linear least-
square regression using the DUD method (Ralston and
Jennrich, 1979), as implemented in the PROC NLIN of the
SAS software package (SAS Institute Inc., 1988). The R2-
value of the linear regression between observed and
predicted growth, and the mean absolute predictive dis-
crepancy (MD), were used to indicate the goodness of ®t.
When equations are `nested' (i.e. a simpler equation is the
special case of a complex one), t- or F-tests were used to
evaluate whether the complex equation led to a signi®cant
improvement. This test was applied mainly to the Richards

F I G . 1. A, Time course of a growth process represented by the beta
sigmoid growth function, as shown by the solid line from t = 0 until
maximal weight (wmax) is achieved at the end of the growth period (te).
Hereafter, the weight equals wmax. The dashed line is the mathematical
extension of eqn (8) beyond te until time (2te ± tm), the second intercept
of eqn (8) on the time axis. B, The corresponding time course of the
absolute growth rate (solid line) and the relative growth rate (dashed

line).
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equation, which encompasses both the logistic and the
Gompertz equation.

Data sets

Four data sets were used to evaluate the growth functions;
these were chosen because they (1) represent growth
processes at the organ, plant and crop level, respectively;
and (2) show growth processes having various sigmoid
shapes or show genotypic and environmental in¯uences on
growth traits.

The ®rst data set refers to wheat (Triticum aestivum L.)
grain growth in a glasshouse experiment involving plants of
six genotypes (Table 1) grown in pots at two temperatures
(Table 2) (W. Guo, pers. comm.). Grain weight was
measured ®ve to eight times during grain ®lling, by oven-
drying at 70 °C for at least 24 h.

The remaining data sets have more data points, providing
opportunities for more robust model testing. The second
data set deals with accumulation of biomass of a single
maize (Zea mays L.) plant. It is a classical data set for
growth analysis (Hunt, 1981), taken from Kreusler et al.

(1879). The data set gives a sigmoid pattern having a long
expolinear phase before the end of growth.

The third data set was presented by Voisin et al. (2002)
for a pea (Pisum sativum L.) crop. Data on aerial biomass
were collected from ®eld crops grown at four levels of
nitrogen. Because pea biomass differed little among nitro-
gen levels, presumably due to the ability of pea plants to ®x
atmospheric nitrogen, the biomass values of the four
treatments were averaged for evaluation. In this data set,
the sigmoid growth was nearly symmetrical when time was
expressed in degree-days (°Cd).

The fourth data set comes from the growth of a ®eld
winter wheat crop (Gregory et al., 1978). Because fewer
measurements were made on root systems, only data of
aerial biomass were used. The time variable was given as
days after sowing. The long growth lag due to low
temperatures during winter and early spring produced a
strongly skewed sigmoid growth pattern.

RESULTS

Parameter values of the beta growth function ®tted to the
growth data of wheat kernels are given in Table 2. The
equivalent visual illustration of the ®tting is shown in Fig. 2.
The function accurately described the dynamics of change
in dry weight of growing grains, with R2-values > 0´94.
Estimated values of wmax, tm, te and cm differed among the
six genotypes tested and between the two temperature
conditions (Table 2). However, the equation underestimated
the ®rst observation in most cases (Fig. 2).

Because of the 12 genotype 3 temperature combinations,
it is not feasible to show curve-®tting results in tables and
®gures for the other six equations individually. To compare
these equations, an overall evaluation of pooled results of
estimated against observed grain weights is given in Table 3.
All growth functions were capable of describing the
dynamics in dry weight of growing grains (R2 > 0´96 and
MD < 2´1 mg). Similar to the beta function, the Gompertz
and the Weibull equations also underestimated the ®rst grain
mass measurement (results not shown).

TABLE 1. Codes of the six wheat genotypes tested in a
glasshouse experiment

Code Genotype name

G1 CMH79A.955/4/AGA/3/4 3 SN64/cno67/INIA66/5/NAC/6/
CMH83.2517*

G2 VEE/CMH77A.917//VEE/6/CMH79A.955/4/AGA/3/43SN64/
CNO67//INIA66/5/*

G3 Baviacora
G4 ALTAR84/AE.SQ//OPATA*²

G5 ALTAR84/AE.SQ//OPATA*²

G6 SRMA/TUI*

* CIMMYT (International Maize and Wheat Improvement Centre)
breeding lines;

² These two genotypes are different selections of the same crosses.

TABLE 2. Estimated parameter values (with s.e. in parentheses) of the beta growth function for grain ®lling in six wheat
genotypes as tested in a glasshouse experiment at two temperatures (original data from W. Guo, pers. comm.)

Temperature (day/night) Genotype* wmax (mg grain±1) tm (d) te (d) R2 cm
²(mg grain±1d±1)

T1: 20/15 °C G1 48´09 (0´94) 19´54 (1´14) 41´37 (2´13) 0´980 1´72
G2 52´20 (1´22) 19´92 (1´40) 42´95 (2´55) 0´973 1´79
G3 50´53 (1´08) 13´05 (1´72) 37´27 (2´42) 0´975 1´96
G4 48´09 (0´91) 12´53 (1´51) 35´50 (2´15) 0´979 1´95
G5 50´98 (0´70) 13´23 (0´99) 31´96 (1´53) 0´987 2´36
G6 42´51 (1´21) 14´58 (1´81) 34´59 (2´96) 0´956 1´79

T2: 25/20 °C G1 39´73 (1´14) 14´47 (1´16) 28´01 (2´17) 0´962 2´15
G2 44´96 (1´53) 14´87 (1´11) 25´94 (2´50) 0´949 2´74
G3 42´54 (0´99) 9´79 (1´40) 24´80 (2´06) 0´978 2´48
G4 41´98 (0´74) 10´34 (0´78) 21´60 (1´19) 0´986 2´88
G5 45´17 (1´22) 9´75 (1´49) 27´11 (2´23) 0´979 2´40
G6 39´90 (1´50) 10´31 (1´97) 25´77 (3´14) 0´954 2´24

* See Table 1 for genotype codes.
² Maximum growth rate, calculated from eqn (9).
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F I G . 2. Observed (mean of three sampled culms at each time) time courses (points) and those described by the beta growth function (curve) of grain
dry weight for six wheat genotypes (Table 1) grown in glasshouse at two temperatures (Table 2). Estimated parameter values are shown in Table 2.

Observed data are from W. Guo (pers. comm.).
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The seven equations have one common parameter, wmax.
Compared with the estimate by the beta function, the
truncated expolinear function gave a slightly lower estimate

of wmax, while the other ®ve equations using w = wmax as the
asymptote gave a higher estimate of wmax (results not
shown). The higher estimate of wmax by the Gompertz
equation was especially conspicuous (Fig. 3A). Of the seven
equations, only the beta and the truncated expolinear
functions give an estimate for the real length of the grain-
®lling period. Because the estimate by the truncated
expolinear function is, in fact, the length of the early
exponential and subsequent linear phase, the length esti-
mated by this function is shorter than that given by the beta
function (Fig. 3B).

Parameter values of the seven growth functions ®tted to
the data of Kreusler et al. (1879), Voisin et al. (2002) and
Gregory et al. (1978) are given in Table 4. The visual
illustration of the ®tting by the beta function is shown in
Fig. 4. Equivalent graphs for other functions are omitted
because all functions achieved reasonable ®ts and therefore
resulted in similar sigmoid curves.

For the classical data set of Kreusler et al. (1879) on
maize plant growth, growth functions represented the
observed trend well (R2 > 0´995, MD < 2´23 g; Table 4).
Compared with others, the truncated expolinear function
®tted slightly better to this data set, which included a
long expolinear phase before the end of growth. As
found for the grain-®lling process in wheat, equations
using w = wmax as the asymptote gave a higher estimate
of wmax than the beta or the truncated expolinear
function, particularly the Gompertz equation (Table 4).
The truncated expolinear function predicted the growth
period as 104´5 d, slightly lower than that predicted by
the beta function (108´5 d).

All seven functions ®tted well to the data sets of Voisin
et al. (2002) and Gregory et al. (1978) (Table 4). Again, the
Gompertz equation predicted an appreciably higher wmax

than other equations for both crops. The truncated expo-
linear function predicted the growth duration as 1242´4 °Cd
for the pea crop and 253´0 d for the winter wheat crop, again
somewhat shorter than values predicted by the beta growth
function.

The present analysis involved a total of 15 curve ®ttings
to each function. For the 15 ®ttings to the Richards equation,
in no case did the value of its parameter v differ signi®cantly
from 1 (P > 0´05), and in only two cases (the pea data set and
G5T1 for grain ®lling in wheat) did the value of v differ
from zero (P < 0´05). Therefore, in nearly all cases, the

TABLE 3. Overall evaluation of the seven growth functions in describing wheat grain-®lling data, by linear regression of
predicted (y) vs. observed (x) grain weights and its R2-value, and by the mean absolute predictive discrepancy (MD)

Model Regression R2 MD (mg)

Truncated expolinear y = 1´062 + 0´969x 0´971 1´984
Symmetrical expolinear y = 0´669 + 0´978x 0´975 1´899
Logistic y = 0´860 + 0´974x 0´973 1´931
Richards y = 0´968 + 0´972x 0´974 1´906
Gompertz y = 0´296 + 0´988x 0´970 2´100
Weibull y = ±0´053 + 0´997x 0´972 2´062
Beta y = 0´294 + 0´988x 0´973 1´987

F I G . 3. Comparison of maximum grain weight estimated by beta and
Gompertz functions (A), and of grain ®lling duration estimated by beta
and truncated expolinear functions (B). Observed experimental data are
from W. Guo (pers. comm.). Diagonal broken lines show the 1 : 1

relationship.
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Richards equation resulted in no signi®cant improvement
over the logistic equation, or over the Gompertz equation.

DISCUSSION

The beta growth function as a new class of growth equation

Zeide (1993) reviewed 12 promising equations, including
popular ones such as the logistic, the Gompertz, the
Richards and the Weibull equations. Given the fact that
growth results from two opposing factors, namely the
intrinsic tendency towards unlimited increase, and restraints
imposed by environmental resistance and ageing, Zeide
transformed the existing equations so that components
corresponding to these two factors were exposed. His
analysis (by differentiation, decomposition into the division

components and taking logarithms) revealed that most
existing growth equations did indeed consist of two
modules, expansion and decline, encapsulating the positive
and negative factors of growth, respectively. The expansion
module is driven by plant size, and the decline module by
age. The form of the expansion module is common to many
equations. The decline module can be either an exponential
or a power function. Accordingly, there are two basic forms
behind growth equations: exponential decline form and
power decline form. As evident from eqn (A1), both
modules are driven by age in our function. The expansion
module is a power function whereas the decline module is a
linear function of the same variable. In this respect, the
equation presented here is not only a new equation but a new
class of growth equations. However, it is dif®cult to provide
either direct or indirect evidence justifying the linear form

TABLE 4. Estimated parameter values (with s.e. in parentheses) of the seven growth functions ®tted to the data for total
biomass of a maize plant (Kreusler et al., 1879), for above-ground biomass of a pea crop (Voisin et al., 2002), and for

above-ground biomass of a winter wheat crop (Gregory et al., 1978)

Maize plant Pea crop Winter wheat crop
Model Parameter Estimate Unit Estimate Unit Estimate Unit

Truncated expolinear wmax 123´36 (1´54) g per plant 1196´00 (16´99) g m±2 1247´96 (37´62) g m±2

to 58´62 (1´71) d 478´68 (40´77) °Cd 181´47 (7´62) d
cm 2´69 (0´15) g per plant d±1 1´57 (0´11) g m±2 (°Cd)±1 17´45 (2´35) g m±2 d±1

rm 0´158 (0´021) d±1 0´008 (0´002) (°Cd)±1 0´077 (0´033) d±1

R2 0´9983 0´9939 0´9852
MD 1´2796 g per plant 26´395 g m±2 40´987 g m±2

Symmetrical expolinear wmax 126´95 (4´01) g per plant 1248´47 (27´51) g m±2 1252´41 (44´19) g m±2

to 57´15 (2´02) d 480´24 (65´83) °Cd 199´69 (62´73) d
cm 2´61 (0´21) g per plant d±1 1´63 (0´2741) g m±2 (°Cd)±1 39´35 (196´93) g m±2 d±1

rm 0´249 (0´118) d±1 0´009 (0´003) (°Cd)±1 0´071 (0´044) d±1

R2 0´9968 0´9940 0´9874
MD 2´0471 g per plant 27´276 g m±2 44´160 g m±2

Logistic wmax 134´51 (4´81) g per plant 1279´08 (27´53) g m±2 1289´08 (43´17) g m±2

tm 83´27 (1´23) d 877´64 (13´85) °Cd 216´30 (1´95) d
k 0´090 (0´007) d±1 0´005 (0´0003) (°Cd)±1 0´061 (0´006) d±1

R2 0´9954 0´9934 0´9875
MD 2´2299 g per plant 30´207 g m±2 41´097 g m±2

Richards wmax 141´87 (11´74) g per plant 1268´55 (39´55) g m±2 1255´83 (46´56) g m±2

tm 81´55 (2´13) d 877´32 (29´08) °Cd 220´01 (4´38) d
k 0´069 (0´021) d±1 0´006 (0´001) (°Cd)±1 0´081 (0´027) d±1

v 0´502 (0´450) ± 1´157 (0´449) ± 1´776 (0´975) ±
R2 0´9956 0´9935 0´9880
MD 1´9312 g per plant 30´316 g m±2 36´526 g m±2

Gompertz wmax 156´65 (10´42) g per plant 1417´43 (57´79) g m±2 1395´33 (82´25) g m±2

tm 79´22 (1´82) d 786´42 (20´01) °Cd 207´95 (2´52) d
k 0´047 (0´005) d±1 0´003 (0´0002) (°Cd)±1 0´036 (0´005) d±1

R2 0´9952 0´9910 0´9833
MD 2´1919 g per plant 33´674 g m±2 50´861 g m±2

Weibull wmax 128´12 (3´84) g per plant 1258´62 (28´90) g m±2 1237´88 (34´17) g m±2

a 2´51310±11* d±3´450 3´326310±10² (°Cd)±3´172 8´848310±23* d±9´381

b 3´450 (0´318) ± 3´172 (0´150) ± 9´381 (0´836) ±
R2 0´9961 0´9938 0´9871
MD 1´8942 g per plant 28´576 g m±2 39´643 g m±2

Beta wmax 123´49 (2´38) g per plant 1213´30 (17´57) g m±2 1235´48 (34´76) g m±2

tm 89´0 (0´76) d 936´43 (10´70) °Cd 229´60 (1´97) d
te 108´47 (1´63) d 1384´77 (26´89) °Cd 257´03 (3´80) d
R2 0´9968 0´9949 0´9851
MD 1´6624 g per plant 25´334 g m±2 40´739 g m±2

MD, mean absolute predictive discrepancies.
* Standard error not given in the SAS output because the value was too low.
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of the decline module. This is because growth decline
cannot be measured directly, or from analysis, e.g. plotting
the ratio of the weight increase (dw/dt) to the expansion
module of eqn (A1) against age, since values of parameters

tm and te cannot be assessed accurately from data prior to
curve ®tting.

Extension of the beta growth function to deal with various
initial conditions

One property of the beta growth function, eqn (8), is that,
like the Weibull equation, it always predicts the initial
weight as zero. Other growth functions assume a certain
initial value at the beginning of growth; this is reasonable
for crops or plants because a crop or a plant does have a
small initial weight at emergence as a consequence of sown
seeds. The absence of a certain initial value in eqn (8) also
explains why, in many cases (Fig. 2), the beta growth
function underestimated grain weight at the ®rst measure-
ment, owing to an estimated delay of a few days in
observing the actual start of ¯owering (W. Guo, pers.
comm.). Nevertheless, for situations where the initial phase
is important, the beta growth function can easily be
extended:

w � wb � �wmax ÿ wb� 1� te ÿ t

te ÿ tm

� �
t ÿ tb

te ÿ tb

� �tmÿtb
teÿtm

with tb � tm < te �11�

where wb is initial weight, and tb is the moment at which
growth begins. Equation (11) is the integral of eqn (7) with
d = 1, using the condition that w = wb if t = tb. The equation
predicts a sigmoid growth pattern within the time span of
tb < t < te and allows for any reference time and initial
weight. Unlike eqn (8), eqn (11) does not give an in®nite
RGR at the start of growth, i.e. at time tb, so long as wb is not

F I G . 4. Observed time courses (points) and those described by the beta
growth function (curve) of the biomass for the whole maize plant
(A, data from Kreusler et al., 1879), for pea crops (B, data from Voisin
et al., 2002), and for winter wheat crops (C, data from Gregory et al.,

1978). Estimated parameter values are shown in Table 4.

F I G . 5. Illustration of the ¯exibility of the beta growth function, eqn (8),
in representing various sigmoid curves by varying the value of tm within
the range: 0 < tm < te. Curves from the quadratic to a nearly single pulse
at te correspond to predictions by setting tm = 0, 0´375te, 0´5te, 0´625te,

0´75te, 0´875te, 0´95te and 0´99975te, respectively.
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zero. However, an over-®tting might occur if both wb and tb
are considered as parameters. For instance, the ®tting of our
data to eqn (11), supplemented with the condition that w = wb

if t < tb, and w = wmax if t > te, did not yield simultaneous
estimates of wb and tb differing signi®cantly from zero
(P > 0´05) because of high standard errors of their estimates.
Only when either wb or tb was ®xed at a certain (e.g. the
observed) value, did the ®tting yield a signi®cant non-zero tb
or wb in some cases. In most cases the more simple formula,
eqn (8), is suf®cient if the emphasis is not on the very ®rst
stage.

Flexibility of the beta growth function

The logistic function is symmetrical around tm. The
Richards function is ¯exible and has often been used to
describe various asymmetrical growth patterns (e.g. Zhu
et al., 1988), but at the cost of using an additional parameter
as compared with the logistic function. Both the Gompertz
and the Weibull functions have the same number of
parameters as the logistic function, and predict asymmet-
rical growth. However, they are not suf®ciently ¯exible. For
example, a symmetrical curve cannot be generated from
these two functions by varying their parameter values. The
Gompertz function is the special form of the Richards
function when v ® 0, and describes an asymmetrical
sigmoid pattern with the point of in¯ection close to wmax/e.
The fact that the Gompertz function consistently had the
lowest R2-values and the highest MD values (Tables 3 and
4), and tended to overestimate wmax (Fig. 3A; Table 4), may
be due to this intrinsic in¯exibility.

The beta growth function, eqn (8), can produce a family
of asymmetrical growth curves within the span 0 < t < te by
varying the value of tm (Fig. 5). An extreme example is
when the maximum growth rate is achieved at the beginning
of growth (tm = 0). Equation (8) then becomes a quadratic
equation without the constant term:

w � wmax�2te ÿ t�t=te
2 �12A�

In such a case (i.e. tm = tb), the more general beta function,
eqn (11), then becomes:

w�wb � �wmax ÿ wb��2te ÿ tb ÿ t��t ÿ tb�=�te ÿ tb�2�12B�

The other extreme case is when the maximum growth
rate is achieved towards the end of the growth period
(tm ® te). The beta growth function then predicts an
extremely skewed growth pattern towards a single pulse
at te (Fig. 5). The symmetrical form of the beta growth
function can be obtained by setting tm as te/2, and eqn
(8) becomes a cubic polynomial without the constant
and linear terms:

w � wmax�3te ÿ 2t�t2=te
3 �13A�

The symmetrical form of eqn (11), with tm = tb + (te ± tb)/2,
is a general cubic polynomial:

w � wb � �wmax ÿ wb��3te ÿ tb ÿ 2t�
�t ÿ tb�2=�te ÿ tb�3 �13B�

Therefore, the beta function represents a generalized
polynomial equation, just as the Richards equation repre-
sents a generalized logistic equation. Cubic polynomial
equations are not considered as general growth functions
because their coef®cients are lacking any biological inter-
pretation (Zeide, 1993). But when polynomial equations are
expressed as eqns (13A) and (13B), the meaning of
parameters does show up. Equation (13) is the simplest
expression that has a zero slope at the beginning and end of
growth. Jones et al. (1979) found that cubic polynomial
equations were better than the logistic and Gompertz
equations in describing the process of grain ®lling in rice
(Oryza sativa L.). Despite having only two parameters, eqn
(13A), supplemented with the condition that w = wmax if
t > te, also ®tted well to the data of wheat grain growth as
used in our study (results not shown). In their model for
examining the impact of grazing on heaths, Read et al.
(2002) used the differential form of eqn (13B) to represent
heather shoot production in the case of no grazing.

Stability of model parameters

In terms of parameter number, the seven growth functions
evaluated in the present study can be divided into two
groups, three- vs. four-parameter equations. In many cases,
some estimated parameters were found to be statistically
insigni®cant in the four-parameter equations. For example,
in the case of the wheat grain-®lling data set, the estimated
parameter rm in the two expolinear functions did not differ
from zero (P > 0´05). The estimated value of rm or cm in eqn
(2), when ®tted to the data of Gregory et al. (1978), had high
standard errors (Table 4) and was therefore insigni®cant
(P > 0´05). The biological meaning of rm and cm requires
that their value is not zero.

Despite its ¯exibility, the Richards equation has often
been criticized: the shape parameter, v, has no obvious
biological interpretation and is so unstable numerically that
its estimate becomes useless (Zeide, 1993). For the data sets
used in the present analysis involving a total of 15 curve
®ttings, in no case did the Richards equation achieve a
statistically signi®cant improvement over the logistic equa-
tion (P > 0´05), and in only two cases did it improve on the
Gompertz equation (P < 0´05).

Like the logistic and the Gompertz equation, the beta
growth function has three parameters, all of which are
biologically interpretable and statistically signi®cant in the
present analysis (P < 0´01). The values of parameters in the
beta function may be roughly judged from visual inspection
of data. Parameters having a straightforward meaning are
advantageous for statistical parameterization of non-linear
equations, if the parameters cannot be estimated through
least-squares regression of linearized forms. Parameters of
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such non-linear functions have to be estimated by using an
iterative regression approach, such as PROC NLIN (SAS
Institute Inc., 1988), which requires an initial estimate of the
parameters. We encountered problems in providing initial
values for parameters a and b in the Weibull function
because their meanings are confounded: the unit of para-
meter a depends on the value of parameter b, such as day±b

or (°Cd)±b. The initial parameter values of this equation can
only be provided by trial and error.

Use of the beta growth function

Many equations have been proposed to describe sigmoid
growth (Zeide, 1993), and new equations are still being
developed (e.g. Birch, 1999). To our knowledge, there is no
existing sigmoid equation suitable for exact estimation of
®nal biomass and duration of determinate growth. Our
function is well suited in this respect, and is better than the
truncated expolinear function because it can smoothly
predict wmax as the ®nal weight at the end of growth. While
simpli®cations were made in its derivation, the beta growth
function accurately described various growth dynamics
(Figs 2 and 4). Because it has only three parameters, all with
a straightforward biological meaning, the function is
suitable for characterizing genotypic differences in, or
environmental in¯uences on, growth processes. This is
clearly shown in the example of wheat grain growth
(Table 2; Fig. 2), where genetic differences among the six
genotypes regarding growth traits (grain ®lling duration,
grain weight, maximum or mean grain ®lling rate) are
immediately apparent, as is the effect of temperature on
these traits. Needless to say, to obtain a reliable estimate of
these traits, the observed data should cover the whole
sigmoid range, preferably with some data points after the
end of growth.

The beta growth function's differential form, i.e. eqn
(A1) with cm calculated by eqn (9), can be used to quantify
the dynamics of the strength of growing sinks (e.g. seeds) in
process-based crop simulation models. Classical (such as
logistic) equations have often been used to describe the
dynamics of the strength of seeds as sinks to absorb
assimilates in such simulation models (e.g. Bindraban,
1997). The beta growth function is more suitable for this
purpose, because (1) it predicts zero growth rate at both the
onset and end of growth; and (2) it can specify seed weight
and its growth duration, allowing a full weight to be reached
precisely within the phenology quanti®ed in a crop model.

The beta growth function predicts an accelerating, but not
mathematically exponential, early growth. Classical growth
analysis assumed that at small sizes, growth processes are
exponential or growth rate is proportional to mass (Hunt,
1981). The intrinsic rate of increase of the early exponential
growth, RGR, is treated as an important characteristic of
particular conditions or genotypes. In such an analysis, the
suitability of a growth function for estimating maximum
RGR is an important part of its function (Birch, 1999). Like
the Weibull function, the beta growth function, eqn (8), has
a zero value at time zero, giving an in®nite value of RGR at
the start of growth (Fig. 1B). The full form of the beta
growth function, eqn (11), does not ensure that the

maximum RGR occurs at tb. Therefore, the beta function,
like the Weibull or the Gompertz equation, is not suitable
for characterizing seedling growth in plant growth analysis.
In this respect, expolinear growth equations have the
advantage that the maximum RGR is one of their par-
ameters. Furthermore, the beta growth function has no
theoretical process basis. Again, expolinear equations have
an advantage, especially when applied to a crop or
vegetation as an alternative to a more complex process-
based simulation model (Goudriaan, 1994), because they
are derived from the quantitative knowledge of sub-
processes such as light interception and leaf area expansion.
Nevertheless, the beta growth function's ¯exibility in
representing various sigmoid patterns, its ease and stability
in statistical parameterization, and its ability to estimate
unambiguously the ®nal biomass and the length of the
growth period warrant its use as a new tool for quantitative
analysis of growth processes.
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APPENDIX

Mathematical derivation of eqn (8)

If the reference time is set as tb = 0 and parameter d is set to
1, the beta function, eqn (7), for describing the time course
of growth rate, becomes:

dw

dt
� cm

te ÿ t

te ÿ tm

� �
t

tm

� � tm
teÿtm �A1�

where cm is the maximum growth rate, which is achieved at
time tm. The growth equation based on eqn (A1) is:

w �
�

cm
te ÿ t

te ÿ tm

� �
t

tm

� � tm
teÿtm

dt �A2�

The solution to this integral can be readily derived or found
in most tables of standard integrals in a mathematical
handbook:

w � cmt
2te ÿ tm ÿ t

2te ÿ tm

� �
t

tm

� � tm
teÿtm �A3�

Equation (A3) does not add an integral constant at the end,
because this constant is determined as zero from the
condition that w = 0 if t = 0.

Most growth functions describe w in terms of wmax. The
value of wmax can be calculated from the de®nite integral of
eqn (A1) for the period between 0 and te, or from eqn (A3)
by setting t = te:

wmax �
�te
0

dw

dt
dt � cmte

te ÿ tm

2te ÿ tm

� �
te

tm

� � tm
teÿtm �A4�

Division of eqn (A3) by eqn (A4) gives:

w

wmax

� 2te ÿ tm ÿ t

te ÿ tm

� �
t

te

� � tm
teÿtm

�1

�A5�

An appropriate re-formulation of eqn (A5) results in eqn (8).
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