
VIEWPOINT

Breeding crop plants with deep roots: their role in sustainable carbon, nutrient
and water sequestration

Douglas B. Kell1,2,*
1School of Chemistry and Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester
M1 7DN, UK and 2Biotechnology and Biological Sciences Research Council, Polaris House, North Star Avenue, Swindon SN2

1UH, UK
* For correspondence. E-mail dbk@manchester.ac.uk

Received: 14 March 2011 Returned for revision: 6 May 2011 Accepted: 3 June 2011 Published electronically: 3 August 2011

† Background The soil represents a reservoir that contains at least twice as much carbon as does the atmosphere,
yet (apart from ‘root crops’) mainly just the above-ground plant biomass is harvested in agriculture, and plant
photosynthesis represents the effective origin of the overwhelming bulk of soil carbon. However, present esti-
mates of the carbon sequestration potential of soils are based more on what is happening now than what
might be changed by active agricultural intervention, and tend to concentrate only on the first metre of soil depth.
† Scope Breeding crop plants with deeper and bushy root ecosystems could simultaneously improve both the soil
structure and its steady-state carbon, water and nutrient retention, as well as sustainable plant yields. The carbon
that can be sequestered in the steady state by increasing the rooting depths of crop plants and grasses from, say,
1 m to 2 m depends significantly on its lifetime(s) in different molecular forms in the soil, but calculations (http://
dbkgroup.org/carbonsequestration/rootsystem.html) suggest that this breeding strategy could have a hugely ben-
eficial effect in stabilizing atmospheric CO2. This sets an important research agenda, and the breeding of plants
with improved and deep rooting habits and architectures is a goal well worth pursuing.

Key words: Breeding, deep roots, genetics, root architecture, carbon sequestration, nutrient efficiency,
drought resistance, soil structure, perenniality.

INTRODUCTION

Whatever the extent and dynamics of increased levels of
atmospheric CO2 [and of other greenhouse gases (GHGs),
for which similar arguments apply], the greenhouse effect
means that temperatures will rise monotonically with their
levels. A precautionary principle seeks to stop these increases
of GHGs, or even to lower them in the steady state. While this
may in part be effected via lowered emissions, a major role is
to be played by mechanisms that extract CO2 from the atmos-
phere and sequester it in the earth or oceans for a greater or
lesser period. Oceans contain approx. 50 or more times the
CO2 than does the atmosphere (Smith, 2004; MacKay,
2008), but increased dissolution of atmospheric CO2 in
oceans (and lakes) leads to their further acidification, with
many undesirable consequences (Sabine et al., 2004; Orr
et al., 2005; Riebesell et al., 2007; Hall-Spencer et al.,
2008; McNeil and Matear, 2008; Reid et al., 2009; Doney,
2010; Shi et al., 2010; Turley et al., 2010). Unless marine
carbon storage could be effected in a recalcitrant form that
sinks rapidly (Jiao et al., 2010; Stone, 2010; Jiao and Azam,
2011), this implies that CO2 should probably best be seques-
tered elsewhere if we are to have ecosystems in which the
net ecosystem carbon budget (Chapin et al., 2006; Smith
et al., 2010b) is accumulative.

Terrestrial and marine environments presently absorb about
half the anthropogenic CO2 (Schimel et al., 2001), and soil
contains at least twice the amount of carbon than is in the
atmosphere (Batjes, 1996) (and three times that in vegetation)

(Smith, 2004), with enormous if uncertain fluxes in both direc-
tions (Jackson et al., 1997; Post and Kwon, 2000; Meir et al.,
2006; Reay et al., 2007; MacKay, 2008; Philippot et al., 2009;
Prechtel et al., 2009; Bond-Lamberty and Thomson, 2010;
Crevoisier et al., 2010; Eglin et al., 2010; Macı́as and
Arbestain, 2010; Smith and Fang, 2010; Singh et al., 2010;
Bastviken et al., 2011) (that are nevertheless quite small rela-
tive to the pools; Smith, 2004). Thus, increasing soil carbon in
the steady state by just 15 % would lower atmospheric CO2 by
30 %, offering a huge environmental benefit. In addition, there
are indications (Bellamy et al., 2005; Monson et al., 2006;
Luo, 2007; Arnone et al., 2008; Bond-Lamberty and
Thomson, 2010; Smith and Fang, 2010; Yvon-Durocher
et al., 2010; Zhao and Running, 2010) of a positive feedback
in which increases in global temperature lower the ability of
present soils and other parts of the biosphere to absorb CO2,
so clearly some kind of intervention is needed. This implies
changes in agricultural practice (Robertson et al., 2000; Lal,
2004, 2008a, b, 2011; Sartori et al., 2006; Pretty, 2008;
Smith et al., 2008; Burney et al., 2010; Follett and Reed,
2010; Smith and Olesen, 2010; Powlson et al., 2011), in an
environment in which edible crop yields also need to increase
substantially and sustainably (Beddington, 2010; Fedoroff
et al., 2010; Godfray et al., 2010a, b; Lal, 2010c; Pretty
et al., 2010; Tester and Langridge, 2010; Foresight, 2011),
and where transport fuels and organic chemicals will need to
come from modern (rather than fossil) photosynthesis
(e.g. Bozell and Petersen, 2010; Somerville et al., 2010;
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Vispute et al., 2010; Whited et al., 2010; Demirbas, 2011).
The purpose of this review, as summarized in Fig 1, is to
develop the relevant arguments.

Certainly it is recognized that the substantial (possibly 10- or
even 20-fold) decreases in atmospheric CO2 over geological
time, especially during the Devonian (416.0–359.2 Ma) and
more gradually since the Cretaceous (145.5–65.5 Ma), have
largely been effected via the production of deep-rooted trees
and the rise of angiosperms, respectively (Mora et al., 1996;
Berner, 1997; Berner and Kothavala, 2001; Royer et al., 2001;
Taylor et al., 2009). These facts provide an important guide to
what may be possible, since the kinds of decreases being
needed now are rather lower (cf. Breecker et al., 2010), and
the role of plants (both roots and shoots) in effecting these
decreases has historically been paramount. Note too that soil
production can be much slower than its erosion without interven-
tion (Torn et al., 1997; Montgomery, 2007; Huggins and
Reganold, 2008), and that roots lower erosion considerably
(Gyssels et al., 2005).

The required changes in agricultural practice, plus the exist-
ence of proof that carbon was indeed once highly sequestered
in plant biomass, led to the recognition that increasing the
amount of below-ground biomass en route to sequestering
atmospheric CO2 is a desirable goal. The purpose of this
review is to point out not only that it is desirable but that it
is possible, and to highlight the areas where research activities
might usefully be focused.

HOW DOES CARBON ENTER THE SOIL?

Although atmospheric CO2 can of course dissolve in soil
moisture, and some carbon comes from manuring (Smith
et al., 2010b), these amounts are comparatively small and
the chief initial method of carbon transfer to soil is via
recent photosynthesis and subsequent transfer to plant roots
(Jiménez and Lal, 2006; De Deyn et al., 2008; Taylor et al.,

2009; Orwin et al., 2010) and thence to soil organic matter
(Kögel-Knabner, 2002). The first thing to note is the huge vari-
ation in the organic (carbon) content of soils – at least 15-fold
in the UK alone (Bellamy et al., 2005; Bradley et al., 2005;
Ostle et al., 2009). This immediately indicates the large
scope for increasing it in many places; indeed, the root
content of different soils also varies at least 10-fold (Jackson
et al., 1996; Schenk and Jackson, 2002a), with a large vari-
ation in the vertical distribution of carbon (Jobbágy and
Jackson, 2000). The magnitude and similarity of these
factors (10- and 15-fold) might be taken to imply that variation
in the amounts of roots themselves (rather than their exudates
and soil biota, for instance) is likely to be the major cause of
the variance, but clearly all processes relevant to both incor-
poration and decomposition (whose difference determines
net values) can contribute to this variance. Given relevant
data, inferencing methods (e.g. Pearl, 2000; Rohr et al.,
2008) can determine which processes drive which.

The soil ecosystem is extremely complex (e.g. Fitter et al.,
2005; Nielsen et al., 2011), but a major role in sequestration
of carbon secreted from roots (‘exudate’) is played by arbuscu-
lar mycorrhiza (AM) (e.g. Staddon and Fitter, 1998; Strack
et al., 2003; Zhu and Miller, 2003; Peterson et al., 2004;
Rillig, 2004; Parniske, 2008; Varma, 2008; Bucher et al.,
2009; Lambers et al., 2009; Leigh et al., 2009; Wilson
et al., 2009) that form symbioses (Helgason and Fitter,
2009) with the roots of the majority of land plants. The mycor-
rhizal fungi (of the genus Glomeromycota) provide nutrients,
especially phosphate (Bucher, 2007), to the plants, which in
turn provide up to 20 % of the carbon that they fix to the
soil-dwelling fungal partners. Mycorrhiza also secrete a
protein called glomalin (Gadkar and Rillig, 2006), whose
extent correlates extremely well with desirable (large aggre-
gates in) soil structure (Bedini et al., 2009; Wilson et al.,
2009). The rhizosphere, as the interface between plants and
soil, is clearly crucial. Roots, mycorrhiza and soil organic
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FI G 1. A mind map (Buzan, 2002) summarizing the content of this review. To interpret this, start at the top and read clockwise.
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carbon (SOC) can all affect each other beneficially, and the
interactions are complex (Feeney et al., 2006; O’Donnell
et al., 2007; Gillespie et al., 2009; Hinsinger et al., 2009;
Lambers et al., 2009; Luster et al., 2009). A couple of
examples include the facts that the soil biota (and roots) help
increase the porosity of soil (Feeney et al., 2006) and that
roots both affect the physical architecture of soils and vice
versa (Hinsinger et al., 2009). However, since there is no
unitary explanation of which processes dominate where, for
present purposes I deem it sufficient to note the role of AM
in these processes, and that the breeding strategies that this
article seeks to promote should take their important activities
into account. Experimental approaches may need to start by
studying the covariation between root architectures and mycor-
rhiza, en route to performing experiments in which one is
changed as an independent variable.

Several relevant areas of the literature are thus bound up
with each other, albeit (as in most fields; e.g. Hull et al.,
2008; Dobson and Kell, 2008; Kell, 2009) that they have
developed independently (the balkanization of the literature
into ‘silos’). Bringing them together indicates that the goal
of breeding plants with extended root systems that can effect
carbon, water and nutrient sequestration (Fig. 2) is not only
desirable but attainable. Four particular scientific areas that
pertain are root architecture and depth, perenniality and low-
or no-till agriculture.

Root architecture

A number of papers and reviews describe the genetic control
of root architecture (e.g. Zhang and Forde, 1998; Casimiro
et al., 2003; Hu et al., 2003; Hochholdinger et al., 2004a,
Swarup et al., 2005; Chaitra et al., 2006; de Dorlodot et al.,
2007; Galinha et al., 2007; Courtois et al., 2009;

Hochholdinger, 2009; Hochholdinger and Tuberosa, 2009;
Péret et al., 2009; Benfey et al., 2010; Bennett and Scheres,
2010; Coudert et al., 2010; Iyer-Pascuzzi et al., 2010;
Paschold et al., 2010; Yang et al., 2010; Yi et al., 2010;
Zimmermann et al., 2010; Lucas et al., 2011). Thus, a
number of root architecture genes are known via the effects
of their mutations on traits such as primary root length, root
branching, root hair formation, and so on, but our present
knowledge of them all, and the mechanistic details by which
they affect phenotype, is comparatively limited. Important fea-
tures of the genetic control differ, for example (Gregory, 2006)
between monocots (such as grasses, cereals and Brachypodium
distachyon; Draper et al., 2001) and dicots (such as
Arabidopsis thaliana; Hochholdinger et al., 2004a; Osmont
et al., 2007; Watt et al., 2009; Zimmermann et al., 2010)
[and interestingly B. distachyon, unlike A. thaliana, forms
associations with mycorrhiza (Bevan et al., 2010)]. The very
interesting ecological and evolutionary analyses that pertain
(e.g. Fitter, 1987) are outside the scope of this summary, but
can clearly provide very useful pointers to the breeding of
plants with the desirable rooting traits that are highlighted
herein. The chief of these is of course root depth.

As well as genetic means, root architecture is also controlled
by hormonal influences from both the host plant (e.g.
Tanimoto, 2005; Santner et al., 2009) and soil organisms
(see above), and to some degree by the physico-chemical
environment (e.g. Fitter and Stickland, 1991; Cahill et al.,
2010). Our focus here, however, is on the genetic control,
which seems to be dominant (Kato et al., 2006).

Maximum rooting depth

There is considerable variation between both plant types and
individual plant strains (cultivars) as to the maximum depth to
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FI G. 2. Cartoon illustration of the potential for the improvement of agricultural and ecological traits by breeding crop plants with large root systems. The root
morphologies are to be considered as illustrative only, and all details of bidirectional fluxes to and from litter and the many soil carbon pools (and including
leaching and erosion) are omitted for clarity. For a summary of the various terms used to describe the most important carbon fluxes and stocks see, for

example, Chapin et al. (2006) and Smith et al. (2010b).
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which they are known to produce roots, but 2 m for angios-
perms (and much more for trees) is not at all uncommon
(Stone and Kalisz, 1991; Canadell et al., 1996; Jackson
et al., 1996; Schenk and Jackson, 2002a, b; Hu et al., 2003),
implying equally that there is considerable scope for increas-
ing the depth of roots by appropriate breeding strategies.
A chief point to note is that most presently cultivated agricul-
tural crops have root depths that indeed do not extend much
beyond 1 m, albeit that a number do (Kristensen and
Thorup-Kristensen, 2004; Kutschera et al., 2009), such that
this implies that there is indeed exceptional scope to breed
this trait. (We recognize of course that many modern grains
have been bred to have short stems, and with little or no atten-
tion being directed specifically to their roots.)

Root length is also typically a function of aridity (Canadell
et al., 1996; Schenk and Jackson, 2002a, 2005). Some very
long-rooted plants, common in arid zones, are known as phrea-
tophytes (Pataki et al., 2008), although this term relates more
to the fact that they obtain their water from deep sources. Root
water dynamics in soil seem not to be as well understood as
one would wish, as many mechanisms contribute, even to its
sign (Burgess and Bleby, 2006 ) (i.e. whether plants add
water to the soil or extract it from it), a phenomenon known
as hydraulic redistribution (Burgess et al., 1998). As well as
the benefits to carbon sequestration, there is evidence support-
ing the role of roots in improving soil structure (Gregory et al.,
2010), on improving hydrology (Macleod et al., 2007) and in
showing that SOC improves agronomic productivity (Lal,
2010b). Some genes [or at least quantitative trait loci
(QTLs)] improve both root architecture and plant yield
(Passioura, 1983, 2006; Tuberosa et al., 2002; Steele et al.,
2006, 2007; Hund et al., 2007), and there are a number of
examples of crops in which the below-ground biomass does
contribute significantly to SOC (sequestration), including
plants such as Andropogon gayunus (Fisher et al., 1994),
Miscanthus × giganteus (Clifton-Brown et al., 2007; Heaton
et al., 2008; Dohleman and Long, 2009; Dondini et al.,
2009a, b; Hillier et al., 2009), Panicum virgatum (switchgrass)
(Ma et al., 2000, 2001; Liebig et al., 2005; Al-Kaisi and Grote,
2007; Anderson-Teixeira et al., 2009; Collins et al., 2010) and
vetiver (Chrysopogon zizanoides L.) (Grimshaw, 2008;
Lavania and Lavania, 2009) grasses, and even sugar cane
(Otto et al., 2009; Galdos et al., 2010). At least five widely
cultivated crop plants can produce roots exceeding 2 m
(Kutschera et al., 2009).

Perenniality

Perenniality, the use of crops that produce edible parts such
as grains (seeds) without annual sowing (and ploughing), has
been championed as an especially valuable idea for consider-
ation, and this coheres significantly with the present theme.
This is not least because such perennials typically develop
considerably longer roots than do modern domesticated
annual crops (Cox et al., 2002, 2006; DeHaan et al., 2005;
Glover et al., 2007, 2010; Dohleman and Long, 2009;
DuPont et al., 2010; Van Tassel et al., 2010). Such perennials
are also known to exhibit hugely decreased nitrate runoff
(Randall and Mulla, 2001) and, importantly, to sequester
much more carbon in soil (Robertson et al., 2000; Kardol

and Wardle, 2010). The extent to which perenniality and
these large root architectures can be decoupled, and whether
and when this is desirable for agronomic purposes, remain
uncertain, though at least some flowering time genes that con-
tribute to perenniality seem to be conserved between monocots
and dicots (Wang et al., 2009; Higgins et al., 2010), in a way
that root architecture is not (see above). Consequently, it
would seem that perenniality – though probably helpful – is
not a necessary accompaniment to crop plants with deep roots.

No-till agriculture

Ploughing releases SOC and, in a similar vein, no-till agri-
culture (that may also be used with perennial crops) assists
carbon sequestration and decreases soil erosion (e.g. Paustian
et al., 2000; West and Post, 2002; Sainju et al., 2003; Lal
et al., 2004; Bernacchi et al., 2005; Amado et al., 2006;
Montgomery, 2007; Huggins and Reganold, 2008; Villamil
et al., 2008; López-Bellido et al., 2010), although tillage of
surface layers that do not disturb deeper roots becomes at
least partially a no-till process (see also Fig. 2). This said,
though, it is important to analyse the entire system of GHG
production to assess the detailed benefits of a more widespread
no-till strategy (Robertson et al., 2000; Six et al., 2002;
Grandy et al., 2006; Steinbach and Alvarez, 2006).

CAN BREEDING REALLY DO THIS?

There are, of course, many examples (e.g. Lippman and
Tanksley, 2001; Hill, 2005; Edgerton, 2009; Johansson
et al., 2010) that show the huge variation in phenotype achiev-
able in agricultural breeding populations, and this is being
stimulated further by techniques such as marker-assisted selec-
tion and genome-driven breeding (e.g. Moreau et al., 2000;
Meuwissen et al., 2001; Eathington et al., 2007; Collard and
Mackill, 2008; Utomo and Linscombe, 2009; Kean, 2010;
Meuwissen and Goddard, 2010). Nonetheless, it might be
argued that the role of genetics or plant breeding in increasing
root depth is likely to be negligible, and that (leaving aside
soils with rock strata just below the surface, where this
might be true) the depth of roots is governed entirely by the
physico-chemical properties of the soil, and not at all by the
genetics of the host (or soil organisms). The experimental
facts are against this (Doussan et al., 2003; Kato et al.,
2006), and a number of simple gene-based arguments show
that this is not the case.

(1) Plant root depths vary greatly in the same soil for different
organisms (e.g. Burch and Johns, 1978; Jackson et al.,
1996; Jobbágy and Jackson, 2000).

(2) Plant root depths vary substantially in the same soils or
growth media for different cultivars of the same plant
(e.g. O’Toole and Bland, 1987; Lilley and Fukai, 1994;
Champoux et al., 1995; Fukai and Cooper, 1995; Price
et al., 1997, 2002a, b; Angadi and Entz, 2002; Bonos
et al., 2004; Løes and Gahoonia, 2004; Chloupek et al.,
2006; Kato et al., 2006; Devaiah et al., 2007; Hund
et al., 2007, 2009, 2011; Sanguineti et al., 2007;
Kamoshita et al., 2008; Karcher et al., 2008; Crush
et al., 2009, 2010; Gregory et al., 2009; Hargreaves
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et al., 2009; Kutschera et al., 2009; Trachsel et al., 2009,
2011; Ao et al., 2010; Iyer-Pascuzzi et al., 2010; Obara
et al., 2010; Tuberosa et al., 2010; Bayuelo-Jiménez
et al., 2011).

(3) Plant root depths can vary substantially between different
mutants (in known genes) of the same parent (e.g. Zhang
and Forde, 1998; Casimiro et al., 2003; Hochholdinger
et al., 2004a, b; Hochholdinger, 2009; Hochholdinger
and Tuberosa, 2009; Rebouillat et al., 2009; Benfey
et al., 2010; Coudert et al., 2010).

Thus any claim that it is impossible to pursue the ‘deep roots’
agenda using plant breeding methods is without merit.

Why the optimism?

It is certainly the case that a number of experts have given a
slightly less optimistic view of the potential of land use
changes to improve carbon sequestration (Smith, 2004; van
Kessel et al., 2006; Soussana and Luscher, 2007; Ciais
et al., 2010; Smith et al., 2010a) (but see Lal, 2010a).
However, this seems to be based in part on the present use
of comparatively shallow-rooted plants that in some regions
may indeed have approached the possible saturation of
carbon sequestration. A particular issue is that most studies
do not make soil measurements much below a metre
(Nepstad et al., 1994; Batjes, 1996; Canadell et al., 1996;
Jobbágy and Jackson, 2000; Guo and Gifford, 2002; Schenk
and Jackson, 2002a; Robinson, 2004; Bradley et al., 2005;
Lorenz and Lal, 2005; Mokany et al., 2006; Ichii et al.,
2009; Qin and Huang, 2010; Wang et al., 2010), and the
kinds of root depths we are looking at here would more than
double that. This doubling of root biomass from a nominal
1 m to a nominal 2 m is really the key issue, together with
the longevity of the roots and carbon they secrete and sequester
below-ground (a complete turnover annually, including of
stover in no-till systems, obviously gives no net steady-state
sequestration).

The turnover rate or time is an especially important measure
here. However, data on the longevity of soil roots and the
(other) pools of carbon that are obtained therefrom in the
soil (Zimmermann et al., 2007; Smith et al., 2010b)
(let alone their variation with depth, soil type, vegetation
type, etc.) are both uncertain and not very easy to come by
(Baggs, 2006; Gregory, 2006; Kuzyakov, 2006; Koerber
et al., 2010; Sanderman and Baldock, 2010), but Gill and
Jackson (2000) indicate a loss of 40 % per year in temperate
grasslands (i.e. a ‘linear’ lifetime of 2.5 years), with a
greater decay as temperature increases, while Högberg and
Read (2006) summarize some of the evidence for the increas-
ing recognition that roots in soil are more long-lived than pre-
viously credited (see also Collins et al., 2010), and there is
increasing evidence for the role of physical protection (occlu-
sion/aggregation) in improving carbon retention (e.g. Krull
et al., 2003; von Lützow et al., 2006; Jastrow et al., 2007;
McCarthy et al., 2008; Virto et al., 2008, 2010; Moni et al.,
2010). The residence time of more refractory forms of SOC,
albeit derived originally from manure or photosynthate, may
be considerably longer (Bull et al., 2000; Paustian et al.,
2000), and isotopic methods (e.g. Dungait et al., 2008, 2009,

2010; Rubino et al., 2010; Smith et al., 2010b) have an impor-
tant role to play in the analysis of the turnover of carbon-
containing soil components and their biomarkers. Biochars
(e.g. Lehmann, 2007; Atkinson et al., 2010; Sohi et al.,
2010) are seen as especially recalcitrant. Clearly the rate of
degradation is controlled by at least two classes of factor, the
rate of biochemical alteration and the extent of physico-
chemical protection (Jastrow et al., 2007), and these vary
among different substances. The rate of biochemical alteration
of a molecule (related to its recalcitrance), and the eventual
loss of carbon as CO2, also depends on what enzymes and
organisms are present that are able to degrade it under the rel-
evant conditions (e.g. of pH, oxygen tension, etc.) (Jastrow
et al., 2007). Without going into the specific chemical
details, there are obvious relationships between all of these
and the overall ability to sequester carbon in various forms.
How to ensure that deep root carbon is more recalcitrant
when we know which molecules are the most recalcitrant, or
have other properties desirable for building soil structure, is
another goal of the breeding process.

HOW MUCH CARBON MAY BE SEQUESTERED
IN THIS WAY?

It would be desirable to give a precise, quantitative answer to
this question, but it is affected by so many variables that the
possible range is quite large; these variables include the base-
line carbon content, photosynthetic yields, microbial and other
respiratory activity, root turnover, soil biophysics and aridity,
soil aggregate water stability and repellency, and so on, and
so we suffice with an approximation. (No attempt is made to
discriminate the many known pools of soil carbon.) The key
issues are the amount that can be sequestered (whether as
roots or as other forms of SOC) per year, and the lifetime of
the carbon so sequestered before it is eventually re-respired
to the atmosphere. Most of the estimates for the carbon seques-
tration potential range from about 0.3 to 0.8 tC ha21 year21

(Smith, 2004), but some estimates are well outside (especially
above) this range. The point, though, is that what matters is not
so much what is happening now as what might be achieved
with suitable breeding of plants with deep (and reasonably
long-lived) roots. Increasing root mass by an extra 1 m depth
with a very modest carbon content of just 1 % carbon by
volume of overall soil mass equates (assuming a relative
density of 1) to 10 kg m22 (100 t ha21), or on average 5 kg
m22 (50 t ha21) if it turns over every 2 years. Lal (2004) indi-
cates that some cultivated soils have lost one-half to two-thirds
of their original SOC pool, with a cumulative loss of
30–40 Mg C ha21 (i.e. 30–40 t ha21), implying that these
levels are a minimum that can be sequestered (since they
once were), so the 50 t ha21 number seems both conservative
and reasonable. Some analyses of existing grasslands and
energy crops imply that at least 100 t ha21 of steady-state
carbon sequestration in roots is routinely attainable (Dondini
et al., 2009a; Silver et al., 2010) [forests typically sequester
even more (Malhi et al., 1999)], with gross global primary pro-
duction exceeding 100 Pg year21 (Beer et al., 2010).

The carbon being produced from fossil fuel burning is some
8.4 Gt year21 (MacKay, 2008), and so to mop this up at the
rate of 50 t ha21 some 1.6 × 108 ha or 1.6 × 106 km2 would
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be required. This compares with some 41.4 × 106 km2 (Bot
et al., 2000) of just rainfed arable land, and 130.56. 106 km2

of total land area excluding polar regions (http://www
.worldmapper.org/). Thus, one thing is clear: doubling the
steady-state depth of roots from approx. 1 m to 2 m can have
a significantly beneficial impact on lowering the levels of
atmospheric CO2. Since the calculations at this level of gran-
ularity are straightforward (without spatial analysis or details
of economics, infrastructure issues, transitional arrangements,
the time required to breed the appropriate crops and to bulk
them up and to disseminate the necessary germplasm, and so
on), we have made them available at http://dbkgroup.org/
carbonsequestration/rootsystem.html. Default values include
the facts that there are 2300 Mha of cropland and a similar
amount of grassland (rangeland) [and note the comparatively
recent loss of an additional approx. 20 % of agricultural land
(Campbell et al., 2008; Somerville et al., 2010)], the carbon
in the atmosphere (essentially as CO2) is some 750–821 Pg
(approx. 385 ppm by volume) while that in the soil is
approx. 1500 Pg, and that the relative density of soil is that
of water, i.e. 1. Calculations based on this imply that an
extra 2 % of carbon occupying an extra 1 m depth over these
areas ¼ 20 kg m22 ¼ 200 t ha21 (or, simplistically ignoring
any feedbacks, 100 t ha21 fixed on average in the steady
state if the lifetime of the average ‘carbon’ held in different
molecules is 2 years).

POSSIBLE COMPLEXITIES

This short overview has concentrated on breeding plants with
deep (and bushy) roots per se, but I recognize that it is necess-
ary to take a full systems approach. For instance, I have not
discussed in any detail the interactions of roots with soil
micro-organisms and other invertebrates. In addition, one
would wish to check details of the consequences of the bio-
chemical turnover of the deeper roots of plants (especially if
waterlogged and anaerobic), lest they produce methane or
nitrous oxide (Philippot et al., 2009), GHGs far more potent
than CO2 (Soussana et al., 2007). Other aspects of plant breed-
ing for carbon sequestration may interact positively or nega-
tively with, or may be decoupled from, agricultural outputs
such as useful (i.e. agriculturally productive) yield. Thus an
improved opening of stomata, that might assist CO2 uptake,
may also lead to greater transpirational losses. The economics
of agriculture-based carbon sequestration will also be affected
significantly by any carbon credits that may be applied (Smith
et al., 2008; MacLeod et al., 2010; Smith and Olesen, 2010;
Lal, 2011).

CONCLUDING REMARKS

In this brief commentary, I have sought to draw attention to the
potentially substantial benefits that are to be had from breeding
and growing crops with very extensive root systems. The
analysis differs explicitly from the more common analysis of
what pertains now as it seeks to understand what might be
done by explicit human breeding of the necessary crops.
In addition to the simple carbon sequestration that these
imply – possibly double that of common annual grain
crops – such crops seem to mobilize and retain nutrients

and water very effectively over extended periods, thus
providing resistance to drought (e.g. Burch and Johns, 1978;
Passioura, 1983, 2006; Ekanayake et al., 1985; Champoux
et al., 1995; Price et al., 2002a; Kato et al., 2006;
Kirkegaard et al., 2007; Bernier et al., 2008; Kamoshita
et al., 2008; Karcher et al., 2008; Cairns et al., 2009; Hund
et al., 2009; McKenzie et al., 2009), flooding and other conse-
quences of climate change, as well as to fertilizer runoff. In
addition, the development of plants with deep roots may in
fact stimulate photosynthetic yields as these are considered
to be more controlled by the carbon sinks of plants (e.g. Zhu
et al., 2010) [demand typically being considerably more con-
trolling than supply when one is seeking to increase biotechno-
logical fluxes (Cornish-Bowden et al., 1995; Hofmeyr and
Cornish-Bowden, 2000)]. The production (by breeding) of
deep roots in some cultivars will undoubtedly be at the
expense of above-ground biomass yields, but there is no evi-
dence that it has to be so (e.g. Fisher et al., 1994). Thus, the
research agenda is clear: we need to learn much more about
those genes that control root development as part of whole
plant development, the interactions of various roots with soil
and soil organisms, and the actual benefits of net carbon, nutri-
ent and water sequestration that can be effected by such crops
under various agronomic conditions. This is likely to include
the requirement to develop novel instrumentation (and algor-
ithms) to measure root and other phenotypes (e.g.
Nadezhdina and Čermák, 2003; Granier et al., 2006; French
et al., 2009; Gregory et al., 2009; Iyer-Pascuzzi et al., 2010;
Wielopolski et al., 2010), as well as the informatics necessary
(e.g. Jenkins et al., 2004) for storing and making available
such data, including the anticipated flood of genomics data.
While there is a way to go before such crops might have, for
example, the grain yields of present day cereals, their breeding
and deployment seems a very promising avenue for sustainable
agriculture.
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Jiménez JJ, Lal R. 2006. Mechanisms of C sequestration in soils of Latin
America. Critical Reviews in Plant Sciences 25: 337–365.
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López-Bellido RJ, Lal R, Owens LB, López-Bellido L. 2010. Does North
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von Lützow M, Kögel-Knabner I, Ekschmitt K, et al. 2006. Stabilization of
organic matter in temperate soils: mechanisms and their relevance under
different soil conditions – a review. European Journal of Soil Science 57:
426–445.

Ma Z, Wood CW, Bransby DI. 2000. Impacts of soil management on root
characteristics of switchgrass. Biomass and Bioenergy 18: 105–112.

Ma Z, Wood CW, Bransby DI. 2001. Impact of row spacing, nitrogen rate,
and time on carbon partitioning of switchgrass. Biomass and Bioenergy
20: 413–419.

Macı́as F, Arbestain MC. 2010. Soil carbon sequestration in a changing
global environment. Mitigation and Adaptation Strategies for Global
Change 15: 511–529.

MacKay DJC. 2008. Sustainable energy – without the hot air. Cambridge:
UIT Cambridge. Available free online at http://www.withouthotair.com/.

Macleod CJA, Binley A, Hawkins SL, et al. 2007. Genetically modified
hydrographs: what can grass genetics do for temperate catchment hydrol-
ogy? Hydrological Processes 21: 2217–2221.

MacLeod M, Moran D, Eory V, et al. 2010. Developing greenhouse gas mar-
ginal abatement cost curves for agricultural emissions from crops and
soils in the UK. Agricultural Systems 103: 198–209.

Malhi Y, Baldocchi DD, Jarvis PG. 1999. The carbon balance of tropical,
temperate and boreal forests. Plant, Cell and Environment 22: 715–740.

McCarthy JF, Ilavsky J, Jastrow JD, Mayer LM, Perfect E, Zhuang J.
2008. Protection of organic carbon in soil microaggregates via restructur-
ing of aggregate porosity and filling of pores with accumulating organic
matter. Geochimica Cosmochimica Acta 72: 4725–4744.

McKenzie BM, Bengough AG, Hallett PD, Thomas WTB, Forster B,
McNicol JW. 2009. Deep rooting and drought screening of cereal
crops: a novel field-based method and its application. Field Crops
Research 112: 165–171.

McNeil BI, Matear RJ. 2008. Southern Ocean acidification: a tipping point at
450-ppm atmospheric CO2. Proceedings of the National Academy of
Sciences, USA 105: 18860–18864.

Meir P, Cox P, Grace J. 2006. The influence of terrestrial ecosystems on
climate. Trends in Ecology and Evolution 21: 254–260.

Meuwissen T, Goddard M. 2010. Accurate prediction of genetic values for
complex traits by whole-genome resequencing. Genetics 185: 623–631.

Meuwissen TH, Hayes BJ, Goddard ME. 2001. Prediction of total genetic
value using genome-wide dense marker maps. Genetics 157: 1819–1829.

Mokany K, Raison RJ, Prokushkin AS. 2006. Critical analysis of root: shoot
ratios in terrestrial biomes. Global Change Biology 12: 84–96.

Moni C, Rumpel C, Virto I, Chabbi A, Chenu C. 2010. Relative importance
of sorption versus aggregation for organic matter storage in subsoil hor-
izons of two contrasting soils. European Journal of Soil Science 61:
958–969.

Monson RK, Lipson DL, Burns SP, et al. 2006. Winter forest soil respiration
controlled by climate and microbial community composition. Nature 439:
711–714.

Montgomery DR. 2007. Soil erosion and agricultural sustainability.
Proceedings of the National Academy of Sciences, USA 104:
13268–13272.

Mora CI, Driese SG, Colarusso LA. 1996. Middle to late Paleozoic atmos-
pheric CO2 levels from soil carbonate and organic matter. Science 271:
1105–1107.

Moreau L, Lemarie S, Charcosset A, Gallais A. 2000. Economic efficiency
of one cycle of marker-assisted selection. Crop Science 40: 329–337.
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