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† Background and aims Despite a recent new classification, a stable phylogeny for the cycads has been elusive, par-
ticularly regarding resolution of Bowenia, Stangeria and Dioon. In this study, five single-copy nuclear genes
(SCNGs) are applied to the phylogeny of the order Cycadales. The specific aim is to evaluate several gene tree–
species tree reconciliation approaches for developing an accurate phylogeny of the order, to contrast them with con-
catenated parsimony analysis and to resolve the erstwhile problematic phylogenetic position of these three genera.
† Methods DNA sequences of five SCNGs were obtained for 20 cycad species representing all ten genera of
Cycadales. These were analysed with parsimony, maximum likelihood (ML) and three Bayesian methods of gene
tree–species tree reconciliation, using Cycas as the outgroup. A calibrated date estimation was developed with
Bayesian methods, and biogeographic analysis was also conducted.
† Key Results Concatenated parsimony, ML and three species tree inference methods resolve exactly the same tree
topology with high support at most nodes. Dioon and Bowenia are the first and second branches of Cycadales
after Cycas, respectively, followed by an encephalartoid clade (Macrozamia–Lepidozamia–Encephalartos),
which is sister to a zamioid clade, of which Ceratozamia is the first branch, and in which Stangeria is sister to
Microcycas and Zamia.
† Conclusions A single, well-supported phylogenetic hypothesis of the generic relationships of the Cycadales is pre-
sented. However, massive extinction events inferred from the fossil record that eliminated broader ancestral distribu-
tions within Zamiaceae compromise accurate optimization of ancestral biogeographical areas for that hypothesis.
While major lineages of Cycadales are ancient, crown ages of all modern genera are no older than 12 million
years, supporting a recent hypothesis of mostly Miocene radiations. This phylogeny can contribute to an accurate
infrafamilial classification of Zamiaceae.

Key words: Biogeography, Cycadales, Bowenia, Stangeria, Dioon, gymnosperms, molecular systematics.

INTRODUCTION

With ten genera and 331 currently accepted species (Osborne
et al., 2012), cycads (order Cycadales) can contribute to under-
standing the origin and evolution of seeds, cones and plant vege-
tative structures (Frohlich and Parker, 2000; Brenner et al.,
2003a, b). Cycads also hold important clues that can be used to
infer early molecular evolution trends of seed plants (Zhang
et al., 2004; Wang et al., 2007), as well as provide evolutionary
insights concerning ancestral plant–animal interactions such
as ancient pollination and herbivory mechanisms (Schneider
et al., 2002; Brenner et al., 2003a; Kono and Hiroshi, 2007;
Terry et al., 2007; Hummel et al., 2008; Butler et al., 2009;
Peñalver et al., 2012).

Cycads have a fossil record dating back to the Lower Permian
of China, reaching their peak in abundance and diversity in the
Mesozoic (Martı́nez et al., 2012). Due to their long evolutionary
history and retention of ancestral characters such as flagellated
sperm, cycads are considered the most primitive extant seed
plant lineage (Brenner et al., 2003b) and are often characterized

as ‘living fossils’. However, recent studies suggest that extant
species are the result of Neogene speciation events (Crisp and
Cook, 2011; Nagalingum et al., 2011).

Despite their extraordinary scientific importance and wide-
spread horticultural popularity, phylogenetic relationships within
Cycadales still are not fully resolved. At the infrageneric level,
phylogenies incorporating molecular data have been published
for Ceratozamia (González and Vovides, 2002; De Castro et al.,
2006), Cycas (Chiang et al., 2009; Sangin et al., 2010; Xiao
et al., 2010), Dioon (Moretti et al., 1993; González et al., 2008;
Moynihan et al., 2012), Encephalartos (Treutlein et al., 2005;
Rousseau, 2012) and Zamia (Caputo et al., 2004). There has also
been some interest in using DNA sequences for bar-coding of
cycad species (Sass et al., 2007; Nicolalde-Morejon et al.,
2011). These phylogenetic reconstructions have been mostly
based on restriction site data from the plastid genome, amplified
fragment length polymorphisms (AFLPs) and sequences of
several regions of plastid DNAand nuclear ribosomal DNA intern-
al transcribed spacer (nrDNA ITS). Plastid sequences to date have
not adequately resolved infrageneric relationships, while ITS data
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yield either phylogenies with few resolved nodes (Caputo et al.,
2004; Treutlein et al., 2005; Sangin et al., 2010) or results highly
incongruent with other molecular or morphological data (De
Castro et al., 2006; González et al., 2008; Xiao et al., 2010;
Moynihan et al., 2012).

At the supra-generic level, questions still remain unresolved,
particularly concerning the phylogenetic placement of three
genera: Bowenia, Dioon and Stangeria. Phylogenies based on
morphology, ITS sequences or several plastid regions yielded
incongruent results for these three genera (e.g. Stevenson,
1990, 1992; Hill et al., 2003; Rai et al., 2003; Bogler and
Francisco-Ortega, 2004; Chaw et al., 2005; Zgurski et al.,
2008; Nagalingum et al., 2011; Griffith et al., 2012). However,
all of these phylogenetic studies provided strong support
for: (1) Cycas as sister to the rest of the Cycadales; (2)
Encephalartos, Lepidozamia and Macrozamia forming a mono-
phyletic group; and (3) Microcycas and Zamia (including
Chigua) as a distinct clade (Figs 1 and 2).

Since Doyle’s (1992) admonishment of single gene phylo-
genies as ‘one character taxonomy’, systematists have striven
to develop concatenated super-matrices of numerous gene
sequences, thereby emulating the ‘total evidence’ approach
of Kluge (1989, 2004). Over the last 15 years, the growing
concern that gene histories are not necessarily congruent with
species histories became more precisely understood (Avise and
Wollenberg, 1997; Doyle, 1997; Maddison, 1997; Avise,
2000), and problems associated with concatenation, even with
mixed models applied to the partitions (Nylander et al., 2004),
have been a focus of discussion (Degnan and Rosenberg, 2006,

2009; Edwards et al., 2007; Kubatko and Degnan, 2007;
Edwards, 2008). The heterogeneity of gene trees, and their con-
flict with species trees, can be caused by several phenomena, in-
cluding: gene duplication/extinction, horizontal gene transfer
and hybridization, and incomplete lineage sorting (Maddison,
1997; Degnan and Rosenberg, 2009). Further, one or several par-
titions of a concatenated super-matrix may bias the tree recon-
struction results by the sheer number of phylogenetically
informative characters (Edwards et al., 2007). Only recently
has there been development of phylogenetic software tools opti-
mized for estimating species trees from multiple gene trees
without concatenation (e.g., Ané et al., 2007; Baum, 2007; Liu
and Pearl, 2007; Liu, 2008; Liu et al., 2008, 2009; Wehe et al.,
2008; Heled and Drummond, 2010; Maddison and Maddison,
2011). Such methods allow gene tree heterogeneity and estimate
topologies which truly represent lineages of populations and
species, rather than genes.

Single-copy nuclear genes (SCNGs) have been shown to
provide a valid alternative to nrDNA and chlorolast DNA
(cpDNA) regions for plant phylogenetic reconstructions (e.g.
Popp and Oxelman, 2007; Roncal et al., 2008; Meerow et al.,
2009; Rousseau-Gueutin et al., 2009; Albach and Meudt,
2010; Zhang et al., 2012; Zimmer and Wen, 2013). The utiliza-
tion of multiple SCNGs can provide a whole selection of
unlinked and independent characters which are extremely valu-
able in phylogenetics (Small et al., 2004). However, SCNGs
have not been widely used mostly because of problems with iso-
lation and amplification, and difficulty in distinguishing between
paralogous and orthologous copies (Mort and Crawford, 2004).

Suborder Cycadineae
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FI G. 1. Phylogeny of Cycacdales based on cladistic analysis of 30 morphological characters (Stevenson, 1990) and formal classification (Stevenson, 1992).
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FI G. 2. Molecular phylogenetic trees of Cycadales from various authors. Numbers below branches are bootstrap percentages ≥50 unless otherwise stated. (A) One of the two most-parsimonious trees from
analysis of 17 plastid genes and non-coding regions (Rai et al., 2003). The second tree exchanged positions for Bowenia and Encephalartos (double-headed arrow). (B) One of the 81 most-parsimonious trees
from analysis of concatenated plastid rbcL and trnL-F, and nrDNA ITS and 26S (Hill et al., 2003). (C) One of the 45 most-parsimonious trees from analysis of plastid matK (Chaw et al., 2005). Arrows indicate
nodes that collapse in the strict consensus. With nrDNA ITS, the authors found the four most-parsimonious trees, the strict consensus of which was fully resolved at the generic level. Bootstrap values in parentheses
are from the ITS analysis. (D) Single most-parsimonious tree found by Boglerand Francisco-Ortega (2004) using combined plastid trnL-Fand nrDNA ITS2. (E) One of the two most-parsimonious trees found in the
analysis of Zgurski et al. (2008) of the same 17 plastid genes and non-coding regions used by Rai et al. (2003). (F–H) Maximum likelihood trees from Nagalingum et al. (2011). (F) Plastid rbcL and matK.
(G) Nuclear PHYP. (H) Combined plastid and nuclear genes. (I) Cladogram of Cycadales inferred from the maximum clade credability chronogram of the gymnosperms using plastid matK and 25S nrDNA
(Crisp and Cook, 2011). Numbers below branches indicate those branches with posterior probabilities ,1.0. (J) Strict consensus of the 96 most-parsimonious trees based on analysis of combined plastid

matK, rpoB and rps4, mitochondrial mtITS and nad1, nrITS, nuclear NEEDLY sequences and 130 morphological characters (Griffith et al., 2012).
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These molecular markers have rarely been used to resolve phylo-
genetic relationships within the Cycadales (e.g. Nagalingum
et al., 2011; Moynihan et al., 2012), although at least six
of them have been isolated and identified for Cycas or Zamia
[i.e. vicilin-like (Braun et al., 1996), the largest subunit of
RNA polymerase II (Nickerson and Drouin, 2004), the second
largest subunit of RNA polymerase II (Oxelman et al., 2004),
APETALA/EREBP (Shigyo et al., 2006), Floricaula/LEAFY
(Frohlich and Parker, 2000) and Cycas-AGAMOUS (hereafter
CyAG; Zhang et al., 2004)].

In this study, we apply five SCNGs to the phylogeny of the
order Cycadales. We specifically aim to evaluate several gene
tree–species tree reconciliation approaches for developing an
accurate phylogeny of the order, contrasting them with concate-
nated parsimony and maximum likelihood (ML) analyses, and
hopefully resolve the erstwhile problematic phylogenetic pos-
ition of Bowenia, Dioon and Stangeria. We discuss our results
in the contexts of clade age estimation, the cycad fossil record
and ancestral area reconstruction.

MATERIALS AND METHODS

Taxonomic sampling

Twenty representative taxa of Cycadales were used in this study
(Table 1). Up to three species were sampled in each genus to
allow branch and bound (B&B) parsimony searches and to
keep the duration of other analyses within a reasonable time
frame (genera with one or two species were completely
sampled). Several studies have indicated that sequence length
and the number of loci are much greater factors in phylogenetic
accuracy than the number of taxa (Rosenberg and Kumar, 2001;
Rokas and Carroll, 2005), and that a denser taxon sample does
not always reduce a pre-existent topological conflict (Zhao
et al., 2013). There is agreement among cycad and gymnosperm
specialists that the cycad genera with multiple species
(i.e. Bowenia, Ceratozamia, Cycas, Dioon, Encephalartos,
Lepidozamia, Macrozamia and Zamia) are monophyletic
(Stevenson, 1990, 1992; Hill et al., 2003; Rai et al., 2003;
Bogler and Francisco-Ortega, 2004; Chaw et al., 2005; Zgurski
et al., 2008; Crisp and Cook, 2011; Nagalingum et al., 2011).
All broad geographic areas in the range of the genera are
represented by the samples in our study, with the exception of
the outgroup Cycas, which has a single species in Africa and
Madagascar (C. thouarsii R. Br. ex Gaudich), but extends
throughout Southeast Asia, India, China, Australia, and the
western Pacific.

DNA extraction, gene amplification and sequencing

DNA extraction was performed using a FastDNA kit (MP
Biomedicals, Santa Ana, CA, USA) or a DNeasy Plant Mini
kit (Qiagen, Valencia, CA, USA) and 20–100 mg of dry leaf
tissue. Five SCNGs (CyAG, COS26, GroES, GTP and HTS)
were amplified using primers developed in our laboratories
(see Supplementary Data Table S1). PCRs consisted of: 30 ng
of total DNA, 1× PCR buffer, 0.2 mM of dNTPs, 0.2 mg mL21

of bovine serum albumin (BSA) or 1× TBT-PAR (Samarakoon
et al., 2013), 0.2 mM of each primer and 0.05 U mL21of
Taq polymerase (New England Biolabs, Ipswich, MA, USA).
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All the PCRs (except HTS) were carried out according to
the following temperature profile: 95 8C for 2 min, 35 cycles of
95 8C for 30 s, annealing temperature (50–60 8C) for 1 min
and 72 8C for 1 min, and final extension at 72 8C for 7 min.
HTS was amplified using touchdown PCR (95 8C for 2 min;
three cycles of 95 8C for 30 s, 58 8C for 1 min, 72 8C for
1 min; three cycles of 95 8C for 30 s, 57 8C for 1 min, 72 8C
for 1 min; three cycles of 95 8C for 30 s, 56 8C for 1 min,
72 8C for 1 min; 30 cycles of 95 8C for 30 s, 54 8C for 1 min,
72 8C for 1 min; and final extension of 72 8C for 10 min). PCR
products were checked using 1.2 % agarose gels with gel red
(Biotium, Inc., Hayward, CA, USA) and a size standard ladder
(100 bp New England Biolabs). Amplified products were
cleaned up using exonuclease I (New England Biolabs) and
shrimp alkaline phosphatase (USB Products- Affymetrix,
Santa Clara, CA, USA), incubating at 37 8C for 1 h, followed
by 80 8C for 20 min. The sequencing was done using ABI
Big Dye Terminator v3.1 chemistry (Applied Biosystems,
Carlsbad, CA, USA) followed by ethanol clean up. Labelled
fragments were visualized on an ABI 3730 Automatic DNA
Sequencer (Applied Biosystems). The nucleotide sequences
were manually edited with Sequencher 4.9 (Gene Codes
Corporation, Ann Arbor, MI, USA).

Phylogenetic methods

Cycas was used as the outgroup for all analyses, as we were
only able to amplify DNA of Gingko with our CyAG primers.
All previous phylogenetic analyses of Cycadales (e.g. Chaw
et al., 2005; Zgurski et al., 2008; Nagalingum et al., 2011)
have resolved Cycas as sister to all other genera in the order,
thus its designation as the outgroup is appropriate. Sequences
were aligned with MAFFT v.6 (Miyata et al., 2002) and/or manu-
ally in Sequencher 4.9. Nucleotide substitution models for each
partition were evaluated with KAKUSAN 4.0 (Tanabe, 2007),
and the corrected Akaike information criterion (AICc)
(Sugiura, 1978) was used for model selection. Parsimony ana-
lysis of the concatenated matrix was conducted in PAUP
v. 4.10b (Swofford, 2004) using a B&B search (Hendy and
Penny, 1982) with simple addition, followed by generation of
jackknife (JK) support values (1000 B&B iterations), and both
total and partitioned Bremer indices, the latter with TreeRot
v3.0 (Sorenson and Franzosa, 2007) and PAUP, using heuristic
searches with 1000 rounds of random addition sequence and
TBR branch swapping. B&B analyses were also conducted on
each gene alone. The ML analyses were completed using
Treefinder (Jobb, 2011). As the most likely model of nucleotide
substitution was the same for all loci, a replicated (500 iterations)
non-partitioned analysis was performed with bootstrap (1000
rounds). Species tree reconciliation analyses were performed
with *BEAST (Heled and Drummond, 2010) as implemented
in BEAST v.1.7.4 (Drummond et al., 2012); BEST (Liu,
2008), a modification of Mr. Bayes 3.1.2; and Bayesian
Concordance Analysis (BCA; Ané et al., 2007) with BUCKy
v.1.4.2 (Larget et al., 2010). A concordance factor can be
defined as the proportion of the genome sampled that supports
a given node in a species tree (Ané et al., 2007; Baum, 2007).

A partitioned analysis was run in *BEAST with 100 million
Markov chain Monte Carlo (MCMC) iterations, under an uncor-
related relaxed clock (Drummond et al., 2006), with random

starting trees for each partition generated under a constant popu-
lation size coalescent model. A Yule model was applied as prior
for the species tree likelihood. The MCMC statistics and trees
were sampled every 1000 iterations. A maximum clade credibil-
ity (MCC) consensus species tree was created from 80 000 trees
(100 000 trees saved minus 20 000 burn-in).

MrBayes v. 3.2.1 (Ronquist et al., 2012) was used to generate
tree files for BCA in BUCKy. Two replicate analyses were run on
each partition, with 10 million iterations and four chains, sam-
pling every 500 iterations, and a burn-in of 1000 for summarizing
posterior samples of both parameter values and trees. The result-
ing tree files from the two runs for each partition contained a total
of 40 000 trees which were transformed to BUCKy infiles with
a further burn-in of 10 000. BUCKy was run four times for
10 million MCMC updates each with four chains.

BEST was run twice concurrently for 100 million MCMC
rounds with 32 chains on a 32-core parallel processing server.
The log was written to and a tree sampled each 2500 iterations.
The total number of trees sampled across both runs was
80 000, 50 % of which were discarded as further burn-in
before generating an MCC consensus species tree.

Divergence age estimation

BEAST was used to perform an age estimation of divergence.
Three fossils used for stratigraphic calibration points were from
Hermsen et al. (2006) as used similarly by Nagalingum et al.
(2011) with the following priors: stem node of Bowenia
[lower ¼ 33.9, upper ¼ 265.7 million years (My)], stem node
of Lepidozamia (lower ¼ 33.9, upper ¼ 265.7 My) and stem
node of Dioon (lower ¼ 55.8, upper ¼ 265.7 My). The only
monophyly constraint was placed on the outgroup, Cycas. A non-
partitioned analysis was run since KAKUSAN found the same
highest likelihood model for all five loci (see the Results). A
random starting tree was used, and a random local clock model
was applied for determination of tree likelihood, as all other
models resulted in zero tree likelihood for the starting trees. A
total of 100 million iterations were run in BEAST, with log and
tree samples every 2500th round. The total number of trees
sampled was 40 000, 10 % of which were discarded as further
burn-in before generating an MCC consensus species tree. Log
output was evaluated in Tracer 1.5. TreeAnnotator in BEAST
was used to generate MCC consensus trees from both BEAST
and BEST output. All species trees were visualized with
FigTree v.1.4 (Rambout, 2012).

Biogeographic analyses

Biogeographic analyses were conducted using RASP v.2.1a
(Yu et al., 2010, 2011). Both the S-DIVA (Yu et al. 2010)
and the dispersal–extinction–cladogenesis (DEC; Ree and
Smith, 2008) methods were applied, using the MCC tree
obtained from the BEAST age estimation analysis, and limiting
ancestral area reconstructions to three to avoid all possible
areas being assigned to deep nodes in the tree. Areas and their
coding included in the analyses were A ¼ Australia, B ¼ China,
C ¼ Africa, D ¼ Caribbean, E ¼Mexico, F ¼ Northern Central
America, G ¼ South America and H ¼ Southern Central
America. Cycas angulata was used as the functional outgroup
as only a single outgroup taxon can be designated in RASP.
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RESULTS

Parsimony

CyAG was the only locus that alone produced a single fully
resolved tree (Table 2; Supplementary Data Fig. S1). A B&B
search of the five locus concatenated matrix found a single
fully resolved tree (Fig. 3) identical to the CyAG topology.
Each non-monotypic genus is monophyletic with 100 % JK
support at their crown nodes. Across 17 nodes of the ingroup,
only two JK values were ,92 % (nodes 2 and 16). Dioon
is the first branch of the ingroup, with 100 % JK value at
the stem node. Bowenia is the next branch of the tree with
99 % JK support at the stem. At the next node, two main clades
are resolved with 63 % JK support at the stem, the lowest
support in the topology. One unites the Old World Zamiaceae
(with the exception of Stangeria) with 100 % JK support
at the stem. Macrozamia is the first branch. Encephalartos
and Lepidozamia are sister genera with 100 % JK support.
The second clade (92 % JK support) unites the American
Zamiaceae and Stangeria, with Ceratozamia as the first
branch, and Stangeria as sister to Microcycas and Zamia with
100 % JK support. Non-partitioned Bremer indices ranged
from 2 to 364 across the 17 nodes of the ingroup, with all but
three .10 (Table 3). Both total and partitioned Bremer indices
were weakest at nodes 2 and 16 (Table 3), which also received
the lowest JK support.

Nucleotide substitution model

By the AICc, a general time-reversible (GTR) model with
gamma correction was the best fit for all five loci. This model
was applied to all MrBayes and BEAST analyses.

Maximum likelihood analyses

Maxinum likelihood resolved the same topology as parsi-
mony, with similar support scores (Fig. 3). The mean tree
score (log likelihood) for the analysis ¼ –19 645.89. As with
all other analyses, the most weakly supported node in the tree
was number 16, which resolves a sister relationship between
the encephalartoid and zamioid sub-clades.

Species tree estimation

All three gene tree–species tree reconciliation approaches
converged on exactly the same tree topology as the concatenated
parsimony analysis (Fig. 3). The effective sample size (ESS)
scores from the *BEAST analysis were all .100, with most
.1000. Posterior values in the MMC consensus species tree
were ,0.99 in only two nodes: the crown node for Old World
and New World Zamiaceae (plus Stangeria) after the branching
of Bowenia (node 16 in Fig. 3), and the stem node of Ceratozamia
(node 15).

The MrBayes runs to develop gene tree sets for BUCKy
achieved stationarity based on the internal diagnostics of
MrBayes and examination in Tracer. The nodes in the MCC
tree from the BCA had concordance factor (CF) scores of 1
in all but two nodes (Fig. 3): node 16 (CF ¼ 0.91) and node
15 (0.99). T
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The ESS scores in Tracer from the BEST run were .1000 for
all statistics except overall likelihood (LnL), all five gene tree
likelihoods (TL) and gene mutation rate (GeneMu). These
latter were ,100, despite a 3 week run on 32 cores. The sub-
optimal scores decreased if the burn-in of the log files in Tracer
was increased, which suggested that the run duration should
have been longer. We then increased the number of MCMC

iterations to 150 million for a second run with little improvement
of these same ESS scores. Despite this fact, the topology of MCC
consensus species tree from BEST was exactly the same as for all
the other analyses, thus we ceased running BEST at this point.
The posterior probability (PP) was ,1.0 at only three nodes of
the BEST MCC consensus species tree: node 16 (PP ¼ 0.56),
and nodes 2 and 15 (0.9 and 0.97, respectively).

Bowenia serrulata

1

9

2

17
15

12
3

10
14

16

18 4

5

11

13

6

7

8

Bowenia spectabilis

Ceratozamia becerrae

Ceratozamia hildae93
86

91
92

53
63

0·82

0·99

0·99

0·57

0·68
0·99
0·97

0·91
0·69

99

0·90 Ceratozamia robusta

Microcycas calocoma

Zamia chigua

Zamia imperialis

Zamia erosa

Stangeria eriopus

Encephalartos altensteinii

Encephalartos macrostrobilus

Lepidozamia hopei

Lepidozamia peroffskyana

Macrozamia diplomera

Macrozamia macdonnellii

Dioon mejiae

Dioon sonorense

Cycas angulata

Cycas bifida

FI G. 3. Congruent tree topology found by concatenated branch and bound parsimony, likelihood, and three gene tree–species tree reconciliation methods for the five
locus SCNG matrix across Cycadales with Cycas as outgroup. Only support values ,1.0 or 100 % are shown. Numbers above branches are ML bootstrap (underlined)
and parsimony jackknife support values for the single most-parsimonious tree; those at nodes are posterior probabilities (PP) from the *BEAST (Heled and Drummond,
2010) maximumclade credibility (MCC) consensus tree; those below branches are concordance factor scores from BUCKy (Larget et al., 2010) and PP (italic) from the

BEST (Liu, 2008) MCC consensus species tree. Bremer (decay) indices are listed in Table 3 and reference the node numbers in black circles.
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Age estimation

The ESS scores in Tracer for the age estimation analysis in
BEAST were all .200, with many .1000. The mean estimated
age of the crown node of Cycadales is 228.8 My (Fig. 4), with a
95 % highest posterior density (HPD) of 179.2–270.6. The
crown node of Zamiaceae has a mean age of 91.1 My, with
95 % HPD of 70.1–110.8. The stem node of Bowenia is dated
to a mean of 74.8 My (95 % HPD ¼ 56.4–91.0), and the split
between the Old World Zamiaceae (less Stangeria) and the
New World (plus Stangeria) is estimated to have occurred
approx. 3 My later (71.9 My; 95 % HPD ¼ 55.7–87.2), followed
4–5 My later by the branching of Ceratozamia and Stangeria–
Microcycas–Zamia (67.4 My; 95 % HPD ¼ 52.0–82.7). The
most recent common ancestor (MRCA) of Stangeria and
Microcycas–Zamia is dated to 60.3 My (95 % HPD ¼ 46.3–
74.2) and that of Microcycas and Zamia at 36.5 My (95 %
HPD ¼ 27.6–45.6). Within the Encephalartaeae, the branching
of Macrozamia is estimated at 39.9 My (95 % HPD ¼ 33.9–
49.2). The MRCA of Encephalartos and Lepidozamia has a
mean age of 32.9 My (95 % HPD ¼ 25.8–41.7). Crown nodes
of all genera, with the exception of Cycas and Dioon
(mid-Miocene), are dated to the late Miocene or to the
Pliocene (Fig. 4), except Macrozamia (Pleistocene), with fairly
narrow HPD ranges. However, the sampling of the larger
cycad genera is limited. We tested removing all but one of each
of the calibration points, respectively, and found a ,10 %
change in node ages in each run, but a corresponding increase
in the length of the 9 5 % HPD intervals (not shown).

Biogeographic analysis

The most likely area for the root node of the phylogeny is
Australia–Mexico–Northern Central America (AEF) by the

S-DIVA method, and Australia–China–Northern Central
America (AEF) by DEC (Fig. 5). While both methods hypo-
thesize two dispersal events and one extinction event subse-
quently (Table 4), probabilities are low, especially with DEC
(P ¼ 0.0082), though an ancestral presence in China (or some-
where in greater Asia) is more likely than in Mexico. In either
case, there is little confidence for any area optimization for the
root node.

The crown node of Cycas (38) is situated in Australia and
China with subsequent vicariance between the two areas by
both methods with P ¼ 1, but the minimal sampling of this
genus weakens the optimization.

The crown node of Zamiaceae (37) is optimized quite differ-
ently between the two methods (Table 4), neither with high
probability. S-DIVA calls Australia and Northern Central
America, with three subsequent dispersal events [Africa, twice
to Mexico, and one vicariance (Australia–Africa–Mexico|
Mexico–Northern Central America)], while DEC considers
Australia–Africa–Mexico as most likely, with subsequent
single dispersal, vicariance and extinction events, the latter elim-
inating an early presence in Africa, dispersal to Northern Central
America, and ultimately vicariance between Australia and
Mexico–Northern Central America.

The stem node of Bowenia (36) is optimized differently by the
two methods, but with similar probabilities (Table 4). S-DIVA
hypothesizes an ancestral area comprising Australia, Africa
and Mexico, with extinction eliminating Africa, a re-entry into
Australia and vicariance between Australia and Australia–
Mexico. DEC hypothesizes a simpler model: stasis in
Australia. For the crown node of Bowenia (35), stasis in
Australia is the optimal scenario with both methods (P ¼ 1).

Node 34 (Fig. 5) is the ancestral node of the tribes
Encephalarteae and Zamieae–Ceratozamieae [Stevenson’s
(1992) Zamioideae with the inclusion of Stangeria]. Both
methods hypothesize two dispersal events and one vicariance
event, but with different routes. From an ancestral Australia–
Mexico, S-DIVA resolves two dispersals to Africa and the
Caribbean, respectively, and vicariance between Australia and
Africa–Mexico–Caribbean P ¼ 0.0556). DEC optimizes two
dispersals into Africa from ancestral Australia and later vicari-
ance between the two (P ¼ 0.0362).

The stem node of Ceratozamia (33) is resolved as a vicariance
between Mexico and Africa–Mexico (P ¼ 0.333). DEC envi-
sages three dispersals, from Africa to Mexico, the Caribbean
and again to Africa, with vicariance between Mexico and
Africa–Caribbean (P ¼ 0.0362). The crown node for
Ceratozamia (32) is optimized as stasis in Mexico by S-DIVA
(P ¼ 1) or dispersal from Mexico to Central America by DEC
(P ¼ 0.2876).

Both area optimization methodologies converged on the same
scenario for the crown node of Stangeria–Zamia–Microcycas
(30), which involves vicariance between Africa and the
Caribbean. The two regions together comprise the ancestral
area. P ¼ 1 with S-DIVA, and 0.2214 with DEC. The crown
nodes of Zamia and Microcycas (29) were similar with both
methods but differed in a second dispersal event with DEC
(P ¼ 0.4425), from the Caribbean to South America, while
that of S-DIVA only included Southern Central America
(P ¼ 1). The crown node scenarios for Zamia (28) reflected
this, in that DEC retained South America in the ancestral area

TABLE 3. Total and partitioned Bremer indices for concatenated
parsimony tree of Cycadales

Node Non-partitioned

Locus

CyAG COS26 GroES GTP HTS

1 115 47.5 13.5 32 8.5 21.5
2 3 4 0 0 –1 0
3 18 6 0.5 10 0 1.5
4 53 28 4 4 5 12
5 48 19 1 11 7 10
6 67 32 7 11 5 12
7 115 47 12 28 8 20
8 Outgroup
9 135 23 15 19 14 17
10 88 6 2 3 1 –1
11 11 55 17 25 7 31
12 68 13 8 15 13 19
13 39 11 3 9 6 10
14 22 22 –1 0 0 1
15 6 4 2 2 0 –2
16 2 –1 2 0 0 1
17 17 5 1 6 3 3
18 364 100 40 70 70 84

See Fig. 1 for the key to node numbers.
Negative numbers signify incongruous support at that node for that partition.

A value of zero indicated neutral support.
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with DEC (P ¼ 0.4069), with the single vicariance between
the Caribbean and Southern Central America–South America,
vs. only Southern Central America and the Caribbean with
S-DIVA (P ¼ 1).

Optimization of the crown node of Encephalarteae (26) was
exactly the same with both methods (S-DIVA P ¼ 1, DEC
P ¼ 0.3881) with dispersal to Africa from ancestry in
Australia. The split between Lepidozamia and Encephalartos
(25) was also the same in both S-DIVA (P ¼ 1) and DEC
(P ¼ 0.7144), with vicariance between Australia and Africa.

The remaining nodes (21–24) had exactly the same
scenarios and probabilities (P ¼ 1) with both methods (Fig. 5,
Table 3), involving geographic stasis in the ancestral area
except for a vicariance event between the two ancestral areas
of Dioon (21).

DISCUSSION

Supra-generic arrangements in the Cycadales and the placement of
Bowenia, Dioon and Stangeria

Complete congruence of species tree topology from three differ-
ent gene tree–species tree reconciliation approaches with the
single tree resolved by parsimony analysis of the concatenated
matrix (Fig. 3) supports the following conclusions concerning
phylogenetic placement for three formerly sedis incertae
genera of the Cycadales: (1) Dioon is sister to all other
members of sub-order Zamiineae sensu Stevenson (1992);
(2) Bowenia is the next branch in Zamiineae; and (3) Stangeria
is sister to Microcycas/Zamia. Our tree topology (Fig. 3) is iden-
tical to that of Bogler and Francisco-Ortega (2004) based on
combined nrDNA ITS2 and plastid trnL-F (Fig. 2C), the ITS
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TABLE 4. Comparison of S-DIVA (Yu et al., 2010) and DEC (Ree and Smith, 2008) biogeographic analyses on the five gene sequence
phylogeny of Cycadales

Node S-DIVA DEC

21 Events: D: 0, V: 1, E: 0 Events: D, 0; V, 1; E, 0
Event route: EF � E|F Event route: EF � E|F
P ¼ 1 P ¼ 1

22 Events: D, 0; V, 0; E, 0 Events: D, 0; V, 0; E, 0
Event route: A � A A � A|A Event route: A � A A � A|A
P ¼ 1 P ¼ 1

23 Events: D, 0; V, 0; E, 0 Events: D, 0; V, 0; E, 0
Event route: A � A A � A|A Event route: A � A A � A|A
P ¼ 1 P ¼ 1

24 Events: D, 0; V, 0; E, 0 Events: D, 0; V, 0; E, 0
Event route: C � C C � C|C Event route: C � C C � C|C
P ¼ 1 P ¼ 1

25 Events: D, 0; V, 1; E, 0 Events: D, 0; V, 1; E, 0
Event route: AC � C|A Event route: AC � C|A
P ¼ 1 P ¼ 0.7144

26 Events: D, 1; V, 0; E, 0 Events: D, 1; V, 0; E, 0
Event route: A � A A � AC A � AC|A Event route: A � A A � AC A � AC|A
P ¼ 1 P ¼ 0.3881

27 Events: D, 1; V, 0; E, 0 Events: D, 1; V, 0; E, 0
Event route: H � H H � GH H � GH|H Event route: GH � GH H � GH|H
P ¼ 1 P ¼ 0.6781

28 Events: D, 0; V, 1; E, 0 Events: D, 0; V, 1; E, 0
Event route: DH � D|H Event route: DGH � D|GH
P ¼ 1 P ¼ 0.4069

29 Events: D, 1; V, 0; E, 0 Events: D, 2; V, 0; E, 0
Event route: D � D D � DH D � D|DH Event route: D � D D � DGH D � D|DGH
P ¼ 1 P ¼ 0.4225

30 Events: D, 0; V, 1; E, 0 Events: D, 0; V, 1; E, 0
Event route: CD � C|D Event route: CD � C|D
P ¼ 1 P ¼ 0.2214

31 Events: D, 1; V, 0; E, 0 Events: D, 1; V, 0; E, 0
Event route: E � E E � EF E � E|EF Event route: EF � EF E � E|EF
P ¼ 1 P ¼ 0.5399

32 Events: D, 0; V, 0; E, 0 Events: D, 1; V, 0; E, 0
Event route: E � E E � E|E Event route: E � E E � EF E � E|EF
P ¼ 1 P ¼ 0.2876

33 Events: D, 0; V, 1; E, 0 Events: D, 3; V, 1; E, 0
Event route: CDE � E|CD Event route: C � ECD � E|CD
P ¼ 0.3333 P ¼ 0.0362

34 Events: D, 2; V, 1; E, 0 Events: D, 2; V, 1; E, 0
Event route: AE � CDEA � CDE|A Event route: A � CA � C|A
P ¼ 0.0556 P ¼ 0.021

35 Events: D, 0; V, 0; E, 0 Events: D, 0; V, 0; E, 0
Event route: A � A A � A|A Event route: A � A A � A|A
P ¼ 1 P ¼ 1

36 Events: D, 1; V, 0; E, 1 Events: D, 0; V, 0; E, 0
Event route: ACE � AE � AE A � A|AE Event route: A � A A � A|A
P ¼ 0.0417 P ¼ 0.0427

37 Events: D, 3; V, 1; E, 0 Events: D, 1; V, 1; E, 1
Event route: AF � AF E � ACEF E � ACE|EF Event route: ACE � AE � AEF � A|EF
P ¼ 0.0625 P ¼ 0.0393

38 Events: D, 0; V, 1; E, 0 Events: D, 0; V, 1; E, 0
Event route: AB � A|B Event route: AB � A|B
P ¼ 1 P ¼ 1

39 Events: D, 2; V, 0; E, 1 Events: D, 2; V, 0; E, 1
Event route: Event route:
AEF � AF � AF A � ABF A � AB|AF ABE � ABE A � ABCE A � AB|ACE
P ¼ 0.0625 P ¼ 0.0082

Global events
Global dispersal: 12 Global dispersal: 14
Global vicariance: 8 Global vicariance: 8
Global extinction: 2 Global extinction: 2

See Fig. 3 for node identity.
D ¼ dispersal, V ¼ vicariance, E ¼ extinction, P ¼ probability of events.
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tree of Chaw et al. (2005) and the combined analysis of Griffith
et al. (2012), but with improved support values.

Several morphological synapomorphies support the clades
recovered in our study. For instance, the large sister clade to
Dioon includes the vast majority of cycad genera, all of
which have stomata on their sporangia (Dehgan et al., 1993).
The presence of lateral lobes in the megasporophylls and
vascular bundles in the pith defines the clade comprised of
Encephalartos, Lepidozamia and Macrozamia (Stevenson,
1990). Unequally branched trichomes are shared only by
Microcycas and Zamia (Stevenson, 1990). The sister relation-
ship of African Encephalartos and Australian Lepidozamia is
supported by common mucilage chemistry that is unique to
these two genera (De Luca et al., 1982).

We are not aware of morphological synapomorphies sup-
porting two of the main clades resolved in the species tree
(Fig. 3): (1) Ceratozamia–Stangeria–Microcycas–Zamia; and
(2) Stangeria–Microcycas–Zamia. The molecular topologies
of Bogler and Francisco-Ortega (2004), Chaw et al. (2005),
Zgurski et al. (2008), Nagalingum et al. (2011) and Crisp
and Cook (2011) supported the Ceratozamia–Stangeria–
Microcycas–Zamia clade. Not all of the gene topologies re-
covered in our study support this clade; indeed, based on the
partitioned Bremer index analysis (Table 3, node 15), support
for this group came mostly from three of the loci (i.e. CyAG,
COS26 and GroES). Only the molecular studies by Bogler and
Francisco-Ortega (2004), Chaw et al. (2005), Zgurski et al.
(2008) in part, and the combined molecular and morphology
analysis of Griffith et al. (2012) recovered the clade composed
of Stangeria, Microcycas and Zamia. The partitioned Bremer
index analysis (Table 3, node 14) showed that this group is
mostly supported by the CyAG data set.

The last comprehensive systematic arrangement of the
Cycadales is that of Stevenson (1992), based on cladistic ana-
lyses of morphological traits (Stevenson, 1990), with clades for-
mally labelled from the rank of sub-order to sub-tribe (Fig. 1).
More recently, Christenhusz et al.,(2011), following the plastid-
based sequence phylogeny of Zgurski et al. (2008), treated the
Cycadales as consisting of two families: Cycadaceae including
only the genus Cycas, and Zamiaceae including the rest of the
genera with no recognized subfamilial ranks.

No available molecular-based phylogenies (Fig. 2) support
the placement of Stangeria and Bowenia within the same
clade [i.e. Stangeriaceae in Stevenson’s (1992) classification].
In contrast, all available molecular phylogenies support the
Cycadineae, Encephalarteae and Zamieae [excluding Chigua,
which has been sunk back into Zamia (Chaw et al., 2005;
Lindstrom, 2009)] as three monophyletic groups, but are
highly discordant concerning the monophyly of the other
suprageneric taxa proposed by Stevenson (1992). Interestingly,
all molecular studies placed the tribes Ceratozamieae and
Zamieae in the same clade (Fig. 2); however, several of the re-
covered topologies showed Stangeria as an anomalous
member of this clade (Hill et al., 2003; Rai et al., 2003; Bogler
and Francisco-Ortega, 2004; Chaw et al., 2005; Zgurski et al.,
2008; Nagalingum et al., 2011, in part).

The chronogram of Nagalingum et al. (2011) was based on a
single nuclear gene (PHYP), which resolved Macrozamia as
sister to a clade of Stangeria and the American Zamioideae
sensu Stevenson (1992), but including Dioon. Only when two

chloroplast regions were included in the matrix, despite
their much lower taxonomic coverage, did Macrozamia resolve
as it does in all of our gene trees and species trees (Fig. 3,
Supplementary Data Fig. S1), as sister to the remainder
of Encephalarteae. However, none of the trees shown in
Nagalingum et al. (2011) is identical to ours (Fig. 3).

Age estimations and biogeographic associations

The earliest known cycad fossils date to the Early Permian of
north China, Crossozamia (Norstog and Nichols, 1997) and
Pseudotenis (Pott et al., 2010), approx. 300–280 million years
ago (Mya). Our mean crown age for modern Cycadales of
approx. 230 My (95 % HPD ¼ 271–179; Fig. 4), may thus be
a reasonable estimate. This would also support a putative ances-
tral distribution in China for the order (Tang, 2004), which
appears at the crown node of our optimization with DEC, at
least in part (Fig. 5, Table 4). North American fossils from this
era, previously assigned to Cycadales, are now considered to rep-
resent different but related orders (Anderson et al., 2007).

The Mesozoic was characterized by an increased occurrence
and diversity of fossil cycads (Hermsen et al., 2009), broadly dis-
tributed throughout the relatively uniform climate of the super-
continent Pangaea. No relationships to living cycad genera
have been proposed for these fossil genera (Anderson and
Anderson, 1989). Fossils identified as Cycas, sister to the rest
of the extant Cycadales, have been described from the late
Cretaceous of Greenland (Osborne, 2002), and from the early
Cenozoic of Japan and China (Liu et al., 1991). The lack of
Cycas fossils from the Southern hemisphere suggests that the
genus was absent from southern Pangaea. A crown age of
12 My for Cycas (Fig. 4) supports the hypothesis of Hill
(1999) that the modern presence of the genus in Africa,
Australia and the Pacific islands probably represents a relatively
recent dispersal from the ancestral area.

The dating of the stem node of Dioon in the Cretaceous
(Fig. 2), with area optimizations (Fig. 5) of Australia–
Northern Central America (S-DIVA) or Australia–Africa–
Mexico (DEC), probably reflects a broad distribution of an
ancestral cycad flora across Laurasia, the northern half of
Pangaea, which began to split apart in the Jurassic, of which
Dioon remains a surviving relict. The lineage (tribe Diooeae)
has fossils from the Triassic of western Laurasia (Lyssoxylon)
and southwestern Gondwana (Micheliilloa) (Artabe et al.,
2005). South American (Bororoa) elements of this tribe disap-
peared after the Cenozoic (Artabe et al., 2005).

Gondwana, the southern portion of Pangaea, also hosted a
great diversity of cycads and cycad-like plants in the area
that would become Australia (Delevoryas, 1975). Bowenia,
the stem node of which is estimated at 75 My, may represent a
surviving remnant of this diversity.

During the late Cretaceous period through the early Tertiary,
the remaining major clades of extant cycads [Encephalartaeae
and Zamioideae sensu Stevenson (1992) + Stangeria] were
established. The dispersal/vicariance is dated at approx. 72 Mya
(Fig. 4), with an ancestral distribution in Australia with DEC or
Australia–Mexico with S-DIVA (Fig. 5, Table 4). This split may
represent the termination of direct exchange between Laurasia
and Gondwana.
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Evaluated on the basis of extant distribution of genera, the
Encephalarteae would appear to represent an eastern Gondwana
lineage the stem age of which (approx. 72 My) suggests was ini-
tially isolated by the break up of that continent. While the sister
relationships of Australian endemic Lepidozamia and the
African endemic Encephalartos is optimized by both S-DIVA
and DEC as vicariance between Africa and Australia (Fig. 5,
Table 4), by the late Paleogene, the stem age of this clade, the
two continents were already situated well apart from each other
(Raven and Axelrod, 1974). This relationship does not fit
any of the Southern hemisphere biogeographic scenarios re-
cognized by Sanmartin and Ronquist (2004), and for now
remains an enigma. However, fossil remains for the Encepha-
larteae (Cantrill, 2000; Artabe et al., 2004, 2005; Martı́nez
et al., 2012) have been found from the Jurassic of India
(Fascivarioxylon), the Cretaceous of Antarctica (Centricycas)
and Argentina (Neochamberlainia, Worsdellia and Wintucycas),
and the Tertiary of Argentina (Menucoa). It has been suggested
that the tribe originated in the Triassic of western Laurasia
(Charmorgia; Artabe et al., 2005), but this latter interpretation
implies Dioon as a member of the group (Zamiaceae subfamily
Encephalartoideae), which it most certainly is not (Fig. 3).

The asteroid impact at the Cretaecous/Tertiary (K–T) bound-
ary, approx. 65.5 Mya (Schulte et al., 2010), resulted in extinc-
tion of nearly a third of terrestrial vegetation and great declines
in species abundance (Nichols and Johnson, 2008). The extinc-
tion rate in tropical North America may have been as high
as 60–70 % (Nichols and Johnson, 2008). The effects of the
K–T boundary impact on cycads are not as clear, but the time
period represented a major diversification time for the
Cycadales. The branch lengths of nodes dated from approx.
75–60 Mya are very short (Fig. 4), suggesting rapid diversifica-
tion (Kubatko and Degnan, 2007), perhaps in this case associated
with drastic environmental changes. Tang (2012) hypothesizes
that modern cycad genera in the Americas represent lineages
that evolved from the survivors of the K–T extinction. The
stem nodes of Ceratozamia (67 Mya) and the Zamia–
Microcyas–Stangeria clade (60 Mya) may reflect the influence
of this catastrophic event. North American leaf remains identi-
fied as cycads have been dated to the first half of the
Paleogene, apparently representing taxa that were not known
from before the K–T boundary (Mustoe, 2008).

Fossils from the early Cenozoic have been variously related to
modern taxa, e.g. Dioonopsis, which has been classified as
Dioon, Ceratozamia or Zamia, but has unique cuticular charac-
teristics (Erdei et al., 2012). An undescribed fossil from an
Eocene deposit in Oregon resembles Dioon (Manchester,
1981; Tang, 2012), at least superficially. Younger fossils from
Oligocene and Miocene strata in Europe bear the diagnostic
cuticle morphology of Ceratozamia (Kvaĉek, 2002, 2004).
Pseudodioon, a Miocene fossil from Turkey, bears macro-
morphological characteristics of Dioon and anatomical features
of Cycas (Erdei et al., 2010). Eostangeria, described from
Paleocene deposits in Wyoming, and Eocene fossils from
Europe and Oregon, greatly resembles Stangeria but has diver-
gent cuticle morphology (Kvaĉek and Manchester, 1999;
Uzunova et al., 2001). A recent fossil from Patagonia,
Argentina pushes a leaflet mid-ribbed zamioid lineage to the
early Cretaceous (Passalia et al., 2010).

In the late Eocene, there were major extinction events linked
to global cooling and a decrease in atmospheric carbon dioxide
(Jaramillo et al., 2006; Zachos et al., 2008; Kunzig, 2011).
These climatic changes led to latitudinal shifts of the main
vegetation belts of the planet and probably the elimination of
cycads from higher latitudes of North America and Eurasia
(Tang, 2012).

Our results indicate that extant diversification of cycad species
occurred in the relatively recent past (Fig. 4), in agreement with
Nagalingum et al. (2011). No crown node of any modern genus
of cycad in our chronogram has a mean date estimate .12 Mya.
Crisp and Cook (2011) also showed that most of the current
species diversification within the Cycadales occurred relatively
recently, although many of their age estimates placed these spe-
ciation events in the Eocene and Oligocene rather than in the
Miocene.

The sister relationship between the South African endemic
monotypic Stangeria eriopus and Zamia–Microcycas, dated to
the early Paleocene but with a 95 % HPD that extends back
into the late Cretaceous (Fig. 4), is also enigmatic, implying an
African–Caribbean vicariance at the ancestral node (Fig. 5,
Table 4). Mesodescolea, a Cretaceous fossil genus described
from Argentina, has some features in common with Stangeria
(Artabe et al., 2004), as does the Laurasian Eostangeria
(Kvaĉek and Manchester, 1999; Uzunova et al., 2001).
Eostangeria also has elements in common with Zamia
(Usunova et al., 2001). We conclude that S. eriopus represents
the only surviving branch of a lineage that was once more
widely distributed. The available fossil evidence suggests that
while Gondwana once enjoyed a cosmopolitan tropical cycad
flora from east to west (Sabato, 1990; Artabe and Stevenson,
1999; Tang, 2006), the South American elements of this flora
were extirpated as Africa and South America separated, while
in Africa and Australia, related taxa evolved and persisted.

The split between the Cuban endemic Microcycas and the
more broadly distributed Zamia is estimated in our chronogram
at approx. 36 Mya when Cuba was already a well-established
and isolated island (Graham, 2003a, b). This is more or less the
same time in the late Eocene/early Oligocene to which the
stem nodes of the modern Encephalarteae are dated (Fig. 4), a
period of global climate change (Jaramillo et al., 2006) that
seems to have resulted in cycad cladogenesis in both hemi-
spheres. Tang (2002) hypothesized that modern cycads colo-
nized the Greater Antilles from Mesoamerica during an
interval during the late Cretaceous/early Cenozoic when they
may have formed a land bridge with the south of Mesoamerica
(Pindell and Kennan, 2009), ground zero for the K–T asteroid
impact at about the same time.

Massive extinctions of the Cycadales meant that many areas
where several of the genera existed in the past do not currently
have any of their living representatives. This might explain
why the inferences in the historical biogeographic reconstruc-
tions for many deeper nodes of our five gene phylogeny were
poorly supported (Fig. 5, Table 4).

Concluding remarks

Our five SCNG phylogeny of Cycadales provides the most
congruent estimate of the phylogeny of the order yet presented.

Salas-Leiva et al. — Phylogeny of the cycads 1275

D
ow

nloaded from
 https://academ

ic.oup.com
/aob/article/112/7/1263/2768918 by guest on 08 M

arch 2024



An emerging picture for the biogeography and evolutionary
history of Cycadales is supported by both the recent molecular
phylogenies and the fossil record. Our results suggest that the
current supra-generic classification of the order needs to be revis-
ited. Further research is underway to determine if there are mor-
phological and anatomical features to support some of the clades
detected in our study and others with congruent results (Bogler
and Francisco-Ortega, 2004; Chaw et al., 2005; Griffith et al.,
2012). The extant diversity of cycad species is recent and post-
dates the Cretaceous–Paleogene boundary. Our topology,
resolved by both concatenation of five loci and three methods
of gene tree–species tree reconciliation, suggests massive
extinctions prior to the most recent diversification events, and
the elimination of certain lineages from entire geographic
areas, including close relatives of modern cycads. This hypoth-
esis is supported by the fossil record. Biogeographic reconstruc-
tions of cycad ancestral areas are compromised by these
extinction episodes and the fact that current distributions do
not mirror those from the past.

SUPPLEMENTARY DATA

Supplementary data are available online at www.aob.oxford-
journals. org and consist of the following. Table S1: primer
sequences for five single copy genes used across the order
Cycadales. Figure S1: trees from individual SCNG locus B&B
parsimony analyses of Cycadales.
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Kvaček Z. 2002. A new Tertiary Ceratozamia (Zamiaceae, Cycadopsida) from

the European Oligocene. Flora 197: 303–316.
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für Geologie und Paläontologie, Monatshefte 240: 111–118.
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Xiao LQ, Möller M, Zhu H. 2010. High nrDNA ITS polymorphism in the
ancient extant seed plant Cycas: incomplete concerted evolution and the
origin of pseudogenes. Molecular Phylogenetics and Evolution 55:
168–177.

Yu Y, Harris AJ, He X. 2010. S-DIVA (Statistical Dispersal-Vicariance
Analysis): a tool for inferring biogeographic histories. Molecular
Phylogenetics and Evolution 56: 848–50.

Yu Y, Harris AJ, He X-J. 2011. RASP (Reconstruct Ancestral State in
Phylogenies) 2.0 beta. Available at http://mnh.scu.edu.cn/soft/blog/RASP.
Last accessed 24 December 2012.

Zachos JC, Dickens GR, Zeebe RE. 2008. An early Cenozoic perspective on
greenhouse warming and carbon-cycle dynamics. Nature 451: 279–283.

Zgurski JM, Rai HS, Fai QM, Bogler DJ, Francisco-Ortega J, Graham SW.
2008. How well dowe understand the overall backbone of cycad phylogeny?
New insights from a large, multigene plastid data set. Molecular
Phylogenetics and Evolution 47: 1232–1237.

Zhang N, Zeng L, Hongyan S, Ma H. 2012. Highly conserved low-copy nuclear
genes as effective markers for phylogenetic analyses in angiosperms. New
Phytologist 195: 923–937.

Zhang PY, Tan HTW, Pwee KH, Kumar PP. 2004. Conservation of class C
function of floral organ development during 300 million years of evolution
from gymnosperms to angiosperms. The Plant Journal 37: 566–577.

Zhao L, Annie ASH, Amrita S, Yi SKF, Rudolf M. 2013. Does better taxon
sampling help? A new phylogenetic hypothesis for Sepsidae (Diptera:
Cyclorrhapha) based on 50 new taxa and the same old mitochondrial and
nuclear markers. Molecular Phylogenetics and Evolution 69: 153–164.

Zimmer EA, Wen J. 2013. Using nuclear gene data for plant phylogenetics:
progress and prospects. Molecular Phylogenetics and Evolution 66:
539–550.

Salas-Leiva et al. — Phylogeny of the cycads1278

D
ow

nloaded from
 https://academ

ic.oup.com
/aob/article/112/7/1263/2768918 by guest on 08 M

arch 2024

http://tree.bio.ed.ac.uk/software/figtree/
http://tree.bio.ed.ac.uk/software/figtree/
http://tree.bio.ed.ac.uk/software/figtree/
http://mnh.scu.edu.cn/soft/blog/RASP
http://mnh.scu.edu.cn/soft/blog/RASP


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 175
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50286
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG2000
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 175
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50286
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG2000
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages true
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 175
  /MonoImageDepth 4
  /MonoImageDownsampleThreshold 1.50286
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


