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† Background and Aims Isoprene is the most important volatile organic compound emitted by land plants in terms of
abundance and environmental effects. Controls on isoprene emission rates include light, temperature, water supply
and CO2 concentration. A need to quantify these controls has long been recognized. There are already models that
give realistic results, but they are complex, highly empirical and require separate responses to different drivers.
This study sets out to find a simpler, unifying principle.
† Methods A simple model is presented based on the idea of balancing demands for reducing power (derived from
photosynthetic electron transport) in primary metabolism versus the secondary pathway that leads to the synthesis
of isoprene. This model’s ability to account for key features in a variety of experimental data sets is assessed.
† Key results The model simultaneously predicts the fundamental responses observed in short-term experiments,
namely: (1) the decoupling between carbon assimilation and isoprene emission; (2) a continued increase in isoprene
emission with photosynthetically active radiation (PAR) at high PAR, after carbon assimilation has saturated; (3) a
maximum of isoprene emission at low internal CO2 concentration (ci) and an asymptotic decline thereafter with in-
creasing ci; (4) maintenance of high isoprene emissions when carbon assimilation is restricted by drought; and (5) a
temperature optimum higher than that of photosynthesis, but lower than that of isoprene synthase activity.
† Conclusions A simple model was used to test the hypothesis that reducing power available to the synthesis pathway
for isoprene varies according to the extent to which the needs of carbon assimilation are satisfied. Despite its simpli-
city the model explains much in terms of the observed response of isoprene to external drivers as well as the observed
decoupling between carbon assimilation and isoprene emission. The concept has the potential to improve global-
scale modelling of vegetation isoprene emission.

Key words: Isoprene, modelling, electron transport, photosynthesis, temperature, carbon dioxide, isoprene
emission, volatile organic compounds.

INTRODUCTION

Isoprene (2-methyl-1,3-butadiene; C5H8) is a highly volatile and
reactive unsaturated hydrocarbon that is produced continuously
in daylight by many terrestrial plants, and in great abundance
by broadleaved trees. On a mass basis, it is the most important
biogenic volatile organic compound (BVOC) emitted by vegeta-
tion, with an annual global emission of approximately 0.5 ×
1015 g C. This is similar in magnitude to the total annual emission
of the greenhouse gas methane (CH4) from all natural sources
combined (Guenther et al., 1995, 2006; Laothawornkitkul
et al., 2009). Although not a greenhouse gas itself, isoprene
reacts in the atmosphere with oxidants, including hydroxyl radi-
cals (OH) and ozone (O3) (Fan and Zhang, 2004), and conse-
quently influences the atmospheric lifetime and concentration
of CH4 (Poisson et al., 2000; Collins et al., 2002, 2010; Pike

and Young, 2009). The influence of isoprene on atmospheric oxi-
dation capacity has been proposed as one of the controls of the
glacial–interglacial variations of atmospheric CH4, as recorded
in ice cores (Valdes et al., 2005; Singarayeret al., 2011). Isoprene
also enhances the production of tropospheric ozone (O3), a
potent greenhouse gas and toxic pollutant, under high-NOx con-
ditions (Sanderson et al., 2003; Hauglustaine et al., 2005), and
can significantly affect the atmosphere’s radiative balance
through the generation of secondary organic aerosols (Claeys
et al., 2004; Heald et al., 2008; Carlton et al., 2009; Nozière
et al., 2011).

Isoprene emissions by plants at the leaf scale respond to
changes in photosynthetically active radiation (PAR), tempera-
ture, ambient CO2 concentration and drought (Sharkey and
Yeh, 2001; Laothawornkitkul et al., 2009; Pacifico et al.,
2009; Niinemets, 2010). Despite general agreement between
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models under the present climate, simulations of future isoprene
emissions, and their potential impact on atmospheric chemistry,
change dramatically depending on the temperature and light
responses of the model (Keenan et al., 2009) and whether the
model includes a physiological response of isoprene emission
to CO2 (Heald et al., 2009; Young et al., 2009; Pacifico et al.,
2012). Given the continuously increasing atmospheric CO2 con-
centration and its impact on future temperature, we need to
understand the processes behind observed responses, and use
that understanding to build better models.

The adaptive significance of isoprene emission is thought to
be connected with enhancing membrane stability at high tem-
peratures, and protection against oxidative stress – including
that induced by high temperatures (Sharkey and Yeh, 2001;
Vickers et al., 2009; Velikova et al., 2011, 2012). On time scales
of weeks to years, acclimation mechanisms acting at the level of
gene transcription may operate, possibly in such a way as to
match isoprene synthase activity to adaptive requirements (Grote
and Niinemets, 2008; Monson et al., 2012; Harrison et al.,
2013). Here, however, we focus on the immediate responses of iso-
prene emission to environmental variations, as observed in experi-
ments conducted over a time scale of minutes to hours, and the
basic metabolic mechanisms that may be responsible for them.

The biosynthesis of isoprene occurs via the chloroplastic
methylerythritol 4-phosphate (MEP) pathway (Lichtenthaler,
1999; Logan et al., 2000; Sharkey et al., 2008). 13C labelling
experiments have shown that the majority of the C in isoprene
comes directly from photosynthesis, with the remainder
coming from cytosolic C pools depending upon the environmen-
tal conditions (Delwiche and Sharkey, 1993; Kreuzwieser et al.,
2002; Karl et al., 2002; Affek and Yakir, 2003; Loreto et al.,
2004). However, the metabolic controls of the MEP pathway
are only beginning to be elucidated (Li and Sharkey, 2012).
With incomplete understanding of the metabolic controls of
the pathway, models have been developed on the basis of experi-
mental studies of the relationships between isoprene emission
and environmental variables. The approach with the longest
pedigree combines empirically derived functions for each envir-
onmental effect: this is the principle of the MEGAN model
(Guenther et al., 2006), developed from the pioneer work of
Guenther et al. (1993). Other approaches have made more
direct use of the limited available information at the biochemical
process level, e.g. SIM-BIM (Zimmer et al., 2000, 2003) and the
models of Niinemets et al. (1999) and Martin et al. (2000). Aside
from the model from Martin et al. (2000), which has an ATP limi-
tation for isoprene production at high internal CO2 concentration
(ci), all these models need an empirical parameterization to re-
produce the observed CO2 response. This is potentially quite a
severe limitation because there may be unforeseen interactions
between the effects of different environmental drivers.
Empirical models such as MEGAN include a multiplicity of
functions for each environmental response of isoprene emission.
More mechanistic approaches such as SIM-BIM, on the other
hand, require information on many parameters. This might also
be an issue because there is a generally accepted trade-off
between the multiplicity of required parameter values and
model robustness. We set out to identify a unifying principle
that might transcend these limitations.

Our starting point was the model of Niinemets et al. (1999),
which is based on quantifying the NADPH requirement of

isoprene synthesis. Niinemets et al. (1999) assumed that a
certain fraction of the total electron flux generated by
Photosystem II is allocated to this function. The model we
present here, initially proposed in Harrison et al. (2013), builds
on Niinemets’ work but differs in one fundamental respect: it
links isoprene emission to the electron availability for isoprene
emission, relative to the needs of CO2 assimilation. Therefore,
the model predicts higher isoprene emissions when absorbed
radiant energy (leading to the ‘supply’ of NADPH) exceeds the
‘demand’ for CO2 assimilation. An excess of energy arises
because of a mismatch between light availability and carboxyl-
ation capacity, which typically occurs daily – especially at
high PAR, associated high temperature and under water stress.
We compare the model’s predictions of observed, published en-
vironmental responses of isoprene emission to changes in PAR
and the leaf-internal concentration of CO2 (ci) with those
obtained with the Guenther et al. (1993) algorithm, hereafter
called G93, which is the basis of the widely used
MEGAN model (Guenther et al., 2006), and with the model of
Niinemets et al. (1999), hereafter called the Niinemets model.
We also compare the theoretical temperature responses of our
model with G93 and the Niinemets model. We focus on these
two models as they have been widely used at the global scale
(Guenther et al., 2006; Lathière et al., 2010; Arneth et al.,
2011; Pacifico et al., 2012). However, other isoprene models
have been developed. Reviews can be found in Arneth et al.
(2007a), Grote and Niinemets (2008), and Monson et al. (2012).

HYPOTHESIS

In isoprene-emitting plants with the C3 pathway of photosyn-
thesis, over 90 % of isoprene production takes place in the chloro-
plast via the MEP pathway (Lichtenthaler et al., 1997; Sharkey
et al., 2008). The final stage is the enzymatic synthesis of iso-
prene from its precursor, dimethylallyl diphosphate (DMADP).
On a per-molecule basis, isoprene synthesis is energetically ex-
pensive, and has a high requirement for reducing power (14
NADPH for one molecule of isoprene). For comparison, only
six NADPH are needed to synthesize glyceradehyde 3-phosphate
(G3P), and only five for pyruvate. NADPH consumption for G3P
and pyruvate synthesis takes place within the Calvin cycle and
therefore is linked to the electron cost for carbon assimilation.
Three additional reducing steps are needed within the MEP path-
way to reduce G3Pand pyruvate to DMADP. These supplementary
reducing steps consume one further NADPH, and two additional
reducing equivalents in the form of either NADPH or ferredoxin
(Fd) (Charon et al., 1999; Hecht et al., 2001; Seemann et al.,
2006; Li and Sharkey, 2012). Our hypothesis focuses on these add-
itional reduction steps, which are directly linked to the production
of isoprene.

Isoprene production is typically measured in nanomoles per
second while photosynthesis and respiration rates (to which
G3P and pyruvate production are linked) are measured in micro-
moles per second. Hence, the major consumption of reducing
power takes place within the Calvin cycle and associated photo-
respiration while the diversion of reducing power to the MEP
pathway is very small. Yet there is abundant circumstantial evi-
dence for a link between the availability of reducing power (after
the requirements of carbon assimilation have been accounted for)
and the magnitude of this diversion. The MEP pathway is tightly

Morfopoulos et al. — A unifying model for responses of isoprene emissions from plants1224

D
ow

nloaded from
 https://academ

ic.oup.com
/aob/article/112/7/1223/2768946 by guest on 09 April 2024



linked to the photosynthetic apparatus, involves light-dependent
reactions and takes place in the chloroplast. Higher isoprene
emission capacity is encountered under conditions when photo-
inhibition occurs, including high light intensities, low ci and high
temperatures. Isoprene emissions decrease if plants are fed with
nitrate (note that nitrate reduction to ammonia occurs mainly in
the cytoplasm and consumes NAPDH) instead of being fed
with ammonia directly (Campbell, 1988; Rosenstiel et al.,
2004). Li and Sharkey (2012) measured an extremely high
level of the intermediate metabolite, methylerythritol cyclodi-
phosphate (MEcDP), in an N2 atmosphere, where the carbon as-
similation and photorespiration sinks for NADPH are blocked.
Thus, it might be that the MEP pathway acts as a ‘branch circuit’
with the amount of NAPDH allocated to it increasing in propor-
tion to the amount of reducing power to spare from other functions.

Thus, we hypothesize that isoprene emission is regulated in the
short term by variations of the DMADP pool size, linked to the
excess or deficit of electrons (and so also reducing power) rela-
tive to the needs of carbon assimilation. Figure 1 provides a sche-
matic of the processes involved. When the chloroplast is
illuminated, light absorbed by the thylakoids generates the elec-
tron flux (Jtot) that finally reduces NADP+ to NADPH. Most of
the NADPH is used in the Calvin cycle for carbon fixation, but
the total NADPH thus generated (≈ 0.5 Jtot) exceeds the
amount consumed in the Calvin Cycle (≈ 0.5 JCO2+O2). When
assimilation is light-limited (at high ci and/or low PAR) there
is still some NADPH available for other functions, which
include nitrate reduction (Canvin and Atkins, 1974; Niinemets,
2004; Eichelmann et al., 2011) and DMADP synthesis. When

assimilation is Rubisco-limited (at low ci and/or high PAR)
this excess of NADPH becomes larger, allowing more
NADPH to be used in DMADP synthesis.

This reasoning suggests the following simple model:

Iso = max {[aJ + b(J − Jv)].f (ci), 0} (1)

where Iso is the rate of isoprene emission; f(ci) is a function of
internal CO2 concentration; J is an estimate of the total electron
flux, taken to be a non-rectangular hyperbolic function of
absorbed PAR and the maximum electron flux Jmax, following
Farquhar et al. (1980); Jv is the electron flux required to
support Rubisco-limited carbon assimilation; and a and b are
parameters. The electron flux required to support carbon assimi-
lation is derived as follows (from Farquhar et al., 1980):

A j = (J/4)(ci − G∗)/(ci + 2G∗) (2)

where Aj is the gross (light-limited) assimilation rate andG* is the
CO2 compensation point in the absence of dark respiration. Hence

J = 4A j(ci + 2G∗)/(ci − G∗). (3)

When Rubisco limits photosynthesis, then

Av = Vcmax(ci − G∗)/(ci + Km) (4)

where Av is the gross (Rubisco-limited) assimilation rate, Vcmax is
the Rubisco capacity and Km ¼ Kc(1 + [O2]/Ko) where Kc and
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FI G. 1. Schematic of the processes underlying the model of isoprene emissions. The availabilityof reducing power (NADPH) for CO2 assimilation is represented by a
colour scheme, from dark blue (deficit of NADPH) to dark red (excess of NADPH). Symbols: NADPH and NADP+, nicotinamide adenine dinucleotide phosphate;
DMADP, dimethylallyl diphosphate; Pyr, pyruvate; G3P, glyceraldehyde 3-phosphate; DOXP, 1-deoxy-D-xylulose 5-phosphate; MEP, 2-C-methyl-D-erythritol

4-phosphate.
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Ko are the Michaelis coefficients of Rubisco for CO2 and O2 re-
spectively (Farquhar et al., 1980). Substituting this into eqn (3)
gives:

Jv = 4Vcmax(ci + 2G∗)/(ci + Km). (5)

It should be noted that J in eqn (1) is used as an estimate of Jtot and
could be an underestimate (Singsaas et al., 2001; Niinemets,
2004). More details of the photosynthetic model, as used in
this paper, can be found in the Supplementary Data.

The term aJ in eqn (1) represents a ‘baseline’ of isoprene emis-
sion under light-limited conditions under the equilibrium condi-
tions for carbon assimilation (J ¼ Jv, energy supply ¼ Rubisco
demand), while b(J – Jv) represents variation in isoprene emis-
sion due to the disequilibrium between supply and demand.

The function f(ci) in eqn (1) is chosen to take the value ci/G*
when ci ≤ G* and 1 otherwise. Because of this function, the model
differs slightly from the one we proposed in Harrison et al. (2013).
The function f(ci) reflects the idea that a minimum rate of supplyof
carbon chains is required for isoprene synthesis, and the common
observation that isoprene emission ceases abruptly when ci ,G*
(Wolfertz et al., 2003; Rasulov et al., 2009, 2011; Monson
et al., 2012; Sun et al., 2012). This fall-off of isoprene at low ci

is not always observed: emission of isoprene in CO2-free air has

been reported in a few studies (Monson and Fall, 1989; Affek
and Yakir, 2003; Li and Sharkey, 2012), but comparable condi-
tions are not found in natural environments.

Although based conceptually on the NADPH requirements of
isoprene synthesis and the Farquhar photosynthesis model, ourap-
proach differs from that of Niinemets et al. (1999, 2004) in which
isoprene production was assumed to be closely linked to the light-
limited carbon assimilation rate (Aj). This difference has import-
ant consequences, as we will show.

TESTS OF THE HYPOTHESIS

We consider the observed environmental responses of isoprene
emission (Iso) and also the ratio of isoprene emission to carbon
gross assimilation (Iso/Agross), which is a sensitive indicator of
the allocation of reducing power to the MEP pathway versus
the Calvin cycle. Wewill also considerchanges in the ratio of iso-
prene emission to carbon net assimilation (Iso/Anet).

Responses to PAR

Equation (1) predicts an increase of isoprene emission with
PAR, but also an increase of the ratio Iso/Agross (Fig. 2A). The
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FI G. 2. Modelled responses of the normalized ratio of isoprene to CO2 assimilation to changes in PAR for (A) our model, (B) G93 and (C) the Niinemets model.
T ¼ 30 8C, ci ¼ 273 mmol mol21, Vcmax_258C ¼ 70 mmol m22 s21, Jmax_258C ¼ 130 mmol m22 s21 based on values from Arneth et al. (2007a). The solid line repre-
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two extreme values of dark respiration to illustrate the potential effect of the magnitude of Rd on how Iso/Anet varies with PAR: greyshort-dashed line, low Rd; Rd_258C ¼
0.5 mmol m22 s21; black long-dashed line, high Rd; Rd_258C ¼ 2 mmol m22 s21. Isoprene model parameters a and b (eqn 1) are based on data of Possell and Hewitt

(2011; fig. 6).
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predicted behaviour of Iso/Anet (Anet ¼ A – Rd, where Rd is mito-
chondrial respiration) is substantially different at low PAR, as
shown in Fig. 2A. At saturating PAR, the difference becomes
less important. This is due to the introduction of the Rd term,
which affects the assimilation independently from the allocation
of reducing power between carbon fixation and secondary me-
tabolism. Most laboratory experiments have reported only Anet;
this should be kept in mind while interpreting the results.

The response of normalized Iso/Agross (and Iso/Anet) with PAR
is predicted to take place in three stages (Fig. 2A).

Stage 1: light-limited carbon assimilation. This stage occurs when
PAR absorbed is insufficient to generate an electron flux to
satisfy Rubisco capacity. It is characterized by an initial steep in-
crease of Iso/Agross with PAR, becoming gradually less steep at
higher PAR. For Iso/Anet the form of the response at low PAR
depends on the magnitude of Rd.

Stage 2: transition between light- and Rubisco-limited carbon as-
similation. This stage is characterized by a discontinuity
(abrupt increase) in the slope of Iso/Agross (and Iso/Anet) versus
PAR.

Stage 3: Rubisco-limited carbon assimilation. When the electron
requirement for carbon assimilation is fully satisfied, the add-
itional reducing power generated by increasing PAR allows
Iso/Agross to continue increasing while Agross remains constant.
In this stage, Iso/Anet follows a similar pattern of the Iso/Agross

and increases with PAR. With still further increases in PAR,
Iso/Agross and Iso/Anet eventually saturate, as J tends to its
maximal value (Jmax).

Note that the PAR flux where the transition between light- and
Rubisco-limited assimilation occurs (Stage 2) as well as the rate
of increase of Iso/Agross with increasing PAR are dependent on
both the photosynthetic and the isoprene model parameters.

We also examined the normalized responses of Iso/Agross and
Iso/Anet to changes in PAR in the G93 and Niinemets models
(Fig. 2B, C). Under light-limited conditions (Stage 1), the
picture differs dramatically depending on the model. In the
Niinemets model, isoprene emissions are tightly linked to Aj

(see Supplementary Data) and therefore the response of Iso to
PAR necessarily has the same shape as that of Aj, irrespective
of the chosen values of Vcmax or Jmax. As a result, the ratio Iso/
Agross in this model is always constant under light-limited condi-
tions, where carbon assimilation is equal to Aj. The ratio Iso/Anet,
when simulated with the Niinemets model, always decreases
with PAR under light-limited conditions. In G93, by contrast,
changes in Iso/Agross with PAR are strongly dependent on
Vcmax, Jmax and temperature under light-limited conditions.
Consequently, the increase followed by a decrease of Iso/Agross

under light-limited conditions, shown in Fig. 2B, is one of the
possible responses of Iso/Agross for G93, obtained for the tem-
perature and photosynthetic parameters chosen for this simula-
tion. Changing those parameters changes the shape of the
response, and Iso/Agross can decrease or increase at low PAR.
Introducing a dark respiration term affects the shape of the re-
sponse of Iso/Anet with PAR, as represented by the dashed lines
in Fig. 2B. Hence, G93 can potentially show an Iso/A response
to PAR similar to that of our model.

All three models predict increasing Iso/Agross with PAR under
Rubisco-limited conditions. Indeed, in the Niinemets model, as

isoprene emissions are linked to Aj, they must continue to in-
crease even when carbon assimilation is Rubisco-limited. In
that sense, the Niinemets model implicitly allows consumption
of extra NADPH above the needs for carbon assimilation (for
the PAR response only). For G93, isoprene emission approaches
an asymptotic value at high PAR, while the Farquhar model fully
saturates under Rubisco-limited conditions at high PAR.

Most studies reporting the fraction of assimilated carbon that is
re-emitted as isoprene have found that it increases with PAR, in
line with our predictions (Sharkey and Loreto, 1993; Harley
et al., 1996; Lerdau and Keller, 1997; Niinemets et al., 2010).
However, one study (Lerdau and Throop, 1999) found no signifi-
cant increase in Iso/Anet with PAR for most of the tropical taxa
they investigated.

Figure 3A compares the relationships of Iso/Anet to PAR in our
model and in digitized data from Sharkey and Loreto (1993) on
kudzu leaves (Pueraria lobata). Assuming Jv is constant (no
variation in ci; Fig. 3B), the observed isoprene emissions show
a strong positive linear relationship with J (r2 ¼ 0.97). The
model parameters a and b (eqn 1) have been estimated from
this linear regression. The Farquhar model parameters were esti-
mated with a best data/model fit by minimizing the residual sum
of squares (RSS). The comparison between our model and the
data for Iso/Anet shows excellent agreement (r2 ¼ 0.92). In com-
parison, G93 and the Niinemets model both show poor agree-
ment (r2 ¼ 0.19 and r2 ¼ 0.06, respectively). Yet the three
models show a good agreement of the modelled isoprene alone
(Iso) with data (our model: r2 ¼ 0.97; G93: r2 ¼ 0.92;
Niinemets: r2 ¼ 0.97; results not shown).

We also compiled data on the response of Iso/Anet to PAR from
the limited numberof published studies to assess the generalityof
the pattern (Fig. 4). The publications reported Anet rather than
Agross, and did not typically provide measurements of Rd. As
the predicted response of Iso/Anet for low PAR is dependent on
Rd, it is not surprising to observe an initial decline in Iso/Anet

with PAR for some of the 18 experiments. More importantly,
the great majority of the studies show increasing Iso/Anet up to
the highest PAR fluxes, especially when photosynthesis saturates
(open circles in Fig. 4). In some studies a drop in assimilation rate
at high PAR contributed to this increase in Iso/Anet at high PAR;
this was probably due to stomatal closure at high PAR, resulting
in reduced ci.

As shown in Fig. 2, the Niinemets model cannot reproduce the
positive response of Iso/Anet to PAR that is generally observed
under low PAR. Our model, along with G93, fully captures the
shape of the observed response of Iso/Anet to PAR over the full
range of PAR. But our model also provides a process-based ex-
planation for this response.

We also examined the relationship between Iso/Agross and
PAR at the canopy scale, at which isoprene emission is more
likely to be controlled by the DMADP pool size than by isoprene
synthase activity (Vickers et al., 2010). We used simultaneous
CO2 and isoprene flux measurements made at Harvard Forest,
Massachusetts, USA (42.548N, 72.178W) (Urbanski et al.,
2007; McKinney et al., 2011). Data used were obtained during
the 2007 growing seasons using eddy covariance, with proton
transfer reaction mass spectrometry used to measure the isoprene
mixing ratio (McKinney et al., 2011). Daytime data were
selected for temperatures above 23 8C where variations in
isoprene emission were no longer significantly driven by
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temperature (Fig. A1). Ecosystem respiration, estimated from
night-time CO2 flux measurements, was used to convert the
daytime measured net ecosystem CO2 exchanges into canopy-
scale gross assimilation rates. Canopy-scale carbon assimilation
shows a typical rectangular hyperbolic response to PAR, but the
response of isoprene emission to PAR is closer to linearity, and
emissions do not saturate at high PAR (Fig. 5A, B). Thus,
above a PAR threshold of approx. 300 mmol m22 s21, Iso/
Agross increases with PAR even at high PAR, where assimilation
is light-saturated, consistently with our hypothesis.

Scaling from leaf to canopy involves additional processes,
such as within-canopy chemistry and canopy structure effects
(Grote, 2007; Keenan et al., 2011; Bryan et al., 2012).
Therefore, a canopy model is needed to fully account for these
results, especially for low PAR where deposition processes can
influence the observed above-canopy isoprene emissions and
possibly explain the observed drop in Iso/Agross. Nevertheless
these results, along with those of laboratory experiments, corrob-
orate the notion that isoprene emission is related to the availabil-
ity of electrons generated in photosynthesis, relative to the
demand for them to be used in carbon assimilation.

Responses to ci

Responses of isoprene emission to ambient CO2 concentration
have been widely reported. Plants grown at high atmospheric
CO2 concentrations generally emit less isoprene than those

grown at lower CO2 concentrations. On short time scales, iso-
prene emission has also been shown to respond strongly and
rapidly to ci, with lower emission rates at higher ci (Rosenstiel
et al., 2003; Wilkinson et al., 2009; Possell and Hewitt, 2011;
Sun et al., 2012). The fact that rapid changes in ci evoke instant-
aneous responses in isoprene emission suggests that the driving
mechanism must be tightly linked to processes in the chloroplast.

The mechanisms behind the decoupling between isoprene
emission and carbon assimilation in the response to ci are not
well established. Niinemets et al. (1999) hypothesized that the
dependency of isoprene emission on ci might be due to the parti-
tioning of reducing power and ATP into the MEP pathway.
However, the model of Niinemets et al. (1999) does not allow
for any greater partitioning of reducing power to the MEP
pathway at low ci. Isotopic labelling studies have provided evi-
dence for the existence of extra-chloroplastic sources of carbon
to support isoprene production. Hence, competition for phos-
phoenolpyruvate (PEP) between cytosolic and chloroplastic pro-
cesses has been proposed as an explanation for the drop in
isoprene emission at high ci due to the CO2-dependence of
PEP carboxylase activity (Karl et al., 2002; Rosenstiel et al.,
2003; Possell and Hewitt, 2011; Trowbridge et al., 2012). But
these experiments compared plants grown at different CO2 con-
centrations. Gene expression involving changes in enzyme quan-
tities cannot explain the observed fast (about 10-min) responses
to changes in ci. We focus here only on the short-term responses
to ci, in which isoprene emission appears to be tightly coupled to
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changes in the pool size of DMADP (Rasulov et al., 2009).
Specifically, we examine whether the fast responses of isoprene
emission to ci could be explained in a simple way by our model,
based on the same mechanisms we have proposed to explain the
response to PAR.

At low ci, carbon fixation is Rubisco-limited, resulting in an
excess of NADPH (Figs 1 and 6A). The excess of NADPH can
be smaller or larger depending on PAR. This provides a simple
explanation for why isoprene responses to changes in ci are light-
dependent (Loreto and Sharkey, 1993; Fig. 7D). Moreover, our
model can indeed reproduce the isoprene emission response to
changes in ci. This is shown in Fig. 6A using data on Acacia
nigrescens from Possell and Hewitt (2011). Here, isoprene emis-
sion shows a strong negative linear relationship with the
Rubisco-limited electron flux, Jv (r2 ¼ 0.70), as shown in
Fig. 6B. The parameters a and b (eqn 1) of our model were esti-
mated from this linear regression. When plotted against ci, our
model shows a good agreement with the data (r2 ¼ 0.70).
Figure 6A also shows the response of the G93 and the
Niinemets model with and without a CO2 inhibition effect
(Arneth et al., 2007a; Pacifico et al., 2011). It is clear from

Fig. 6A that these models do not reproduce the observed response
of isoprene emission to ci. Without an additional empirical func-
tion for CO2 inhibition, isoprene emissions simulated with the
Niinemets model are quite out of range. Instead, the model
shows a strong negative correlation with the data (r2 ¼ 0.7).
The negative relationship can be explained by the fact that al-
though the PAR and therefore the light-limited electron flux
(J ) are constant, light-limited assimilation (Aj) is strongly ci-
dependent. Adding an empirical function to represent the CO2 in-
hibition effect, as in Arneth et al. (2007a), changes the shape of
the response (allowing a decrease at high ci) but still the simu-
lated emissions agree poorly with the data.

Again using the data from Possell and Hewitt (2011), we
plotted Iso/Anet versus ci (Fig. 7A) and J – Jv (Fig. 7B). These
plots confirm that the fraction of assimilated carbon allocated
to isoprene production increases under conditions of NADPH
excess. This provides a simple explanation for the response of
isoprene emission to ci. The extremely steep rise in Iso/Anet

when J – Jv becomes positive is due to the combination of
steeply increasing isoprene emission with decreasing assimila-
tion rate as ci declines.
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Loreto and Sharkey (1990) measured changes in isoprene
emission with changing ci at different PAR fluxes in Quercus
rubra. Both Iso/Anet and isoprene emission are shown (Fig. 7C,
D) to increase with PAR, consistent with a dependence on
NADPH availability, at all values of ci. We compared the
responses of G93 and the Niinemets model to ci at different
PAR fluxes, together with our model (Fig. 8). Note that both
G93 and the Niinemets model are applied here in their original
formulations (see Supplementary Data for details), and therefore
do not include additional parameterizations of the CO2 effect. A
number of studies have used these same models with additional
empirical functions, introduced specifically to account for the
observed CO2 inhibition (Arneth et al., 2007b; Heald et al.,
2009; Pacifico et al., 2011). G93 in its original formulation simu-
lates no change at all in isoprene emission with changes in ci, al-
though it has isoprene emission depending on PAR (Fig. 8B).
The Niinemets model in its original formulation also simulates
increasing isoprene emission with PAR, but here the modelled
emissions increase with increasing ci, due to the fact that this
model tightly links isoprene emission to light-limited assimila-
tion (Fig. 8C). Thus, additional functions are required in both
models to account for the observed effects of varying ci. In con-
trast, our model (Fig. 8A) can reproduce the form of the ci

response shown in the data (Fig. 7D), as well as the effects of
combined changes in ci and PAR (Fig. 7D), without the need
for any additional function.

Responses to leaf temperature

The temperature dependence of isoprene emission differs from
that of photosynthesis. Temperature optima for carbon assimila-
tion are usually ≤ 30 8C in C3 plants, while isoprene emission
peaks at ≈ 40 8C (Guenther et al., 1993; Niinemets et al., 1999;
Sharkey and Yeh, 2001; Pacifico et al., 2009). An increase of
Iso/A with temperature is usually observed (Sharkey and Loreto,
1993; Harley et al., 1996; Sharkey et al., 1996; Niinemets et al.,
1999; Sharkey and Yeh, 2001). The optimum for isoprene emis-
sions rarely exceeds 40 8C, so the temperature dependence of iso-
prene emission cannot be fully explained by the temperature
dependence of isoprene synthase, which is maximally active
between 45 and 48 8C (Monson et al., 1992; Lehning et al.,
1999; Niinemets et al., 1999; Rasulov et al., 2010). The decrease
in isoprene emissions above 40 8C has long been considered to be
linked to the behaviour of the photosynthetic electron transport
rate (Guenther et al., 1991; Niinemets et al., 1999). Rasulov
et al. (2010) found that this decrease is associated with decline
in the DMADP pool size and the energetic status of the leaf.

In G93 the temperature dependency of isoprene emission
is fixed with a temperature optimum around 38 8C. In the
Niinemets model it is assumed to be primarily controlled by
IspS activity, with the fraction of electrons used for isoprene pro-
duction exponentially increasing with temperature. The tem-
perature optimum for isoprene emissions in the Niinemets
model is thus close to the optimum for IspS. Some global-scale
studies have set an upper limit for the increase of 1with tempera-
ture, thereby reducing the temperature optimum to a value closer
to 38 8C (Pacifico et al., 2011) (Supplementary Data A.2).

Our model is based on the hypothesis that the production of
DMADP depends on photosynthetic electron flux and variations
in electron availability for functions other than carbon assimila-
tion. Thus, our modelled optima for isoprene emissions are pri-
marily driven by the behaviour of the light-limited electron
flux. Figures 9 and 10 illustrate how a temperature response
arises in our model. Carbon assimilation follows the lower of
the temperature response curves of the Rubisco and light-limited
assimilation rates. Rubisco activity usually has a higher tempera-
ture optimum than electron transport (Crafts-Brandner and
Salvucci, 2000; Medlyn et al., 2002; Cen and Sage, 2005;
Kattge and Knorr, 2007). At high PAR an excess of NADPH
can arise for temperatures below the optimum for electron trans-
port (J ), so isoprene emissions increase. Above this optimum
(Topt_J), Jv still increases even if assimilation is reduced, due to
the higher affinity of Rubisco for O2 at high temperatures. Both
J and (J 2 Jv) decrease for temperatures higher than Topt_J (as
illustrated in Fig. 9B). Our model thereby predicts a temperature
optimum of isoprene emissions that is closer to the temperature
optimum of the electron transport rate. Beyond this optimum,
our model predicts a drop in the availability of reducing power,
leading to a decrease of DMADP and consequently isoprene
emissions. At low PAR (light-limited condition), however,
(J 2 Jv) decreases with increasing temperature, compensating
for the increase of J. Predicted emissions are thus almost
insensitive to temperature or even decrease with temperature
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(Fig. 10A, B). This behaviour is not realistic, so the model may be
overestimating the effect of (J 2 Jv ) at low PAR.

We infer that energetic control alone is insufficient to fully
explain the observed temperature dependency of isoprene emis-
sion. In principle the activities of enzymes along the MEP
pathway should also influence the production rate of DMADP,
but very little is known about their temperature responses
(Zimmer et al., 2000). Temperature optima for isoprene produc-
tion are shifted toward higher temperature than Topt_J, probably
because a decrease in DMADP pool size is compensated for by
an increase in IspS activity (Rasulov et al., 2010). Taking into
account the temperature response of IspS, we can reproduce
this shift (Figs 9C and 10C). So we suggest that temperature
effects on enzyme activity may need to be considered, as well
as temperature effects on electron availability.

A further limitation of our model is the paucity of available in-
formation on the temperature responses of Jmax and Vcmax

(Medlyn et al., 2002; Kattge and Knorr, 2007). The experiments
needed to quantify these responses are time-consuming, and in
particular, few studies have included temperatures .40 8C. In
general we would expect a decline in DMADP production for
temperatures .40 8C due to thylakoid damage, while at tem-
peratures above 45–48 8C irreversible damage to enzyme func-
tion will cause isoprene emission to cease.

Using data from Medlyn et al. (2000) and references therein,
we checked variations with temperature of electron availability
among isoprene emitting species at 1000 mmol m22 s21 PAR
(Fig. 11). We also tested the influence of the temperature re-
sponse parameterization of Vcmax by contrasting an Arrhenius
function with a peak function (Supplementary Data), as
described in Medlyn et al. (2000). The temperature optima for
the selected species are all higher for Vcmax than Jmax (Medlyn
et al., 2002; Kattge and Knorr, 2007). Consequently, we pre-
dicted a decline in DMADP pool size above Topt_J, due to the
decline of J being accompanied by a decline in (J 2 Jv), but
the shape of the decline depended on the parameterization adopted.

DISCUSSION

We have used a conceptual model to ask whether variation in the
availability of NADPH in the chloroplast can plausibly account
for observed changes in isoprene emission with PAR, ci and
leaf temperature. The answer isyes. By modelling isoprene emis-
sion as proportional to a simple metric of the excess or deficit of
electrons relative to the demands of carbon assimilation, we have
provided a unifying explanation for the lack of close coupling of
isoprene emission with carbon assimilation, the disparities in
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carbon allocated to isoprene production, high isoprene emissions
at low ci and the shift of the temperature optimum for isoprene
emission above that of carbon assimilation but below that of iso-
prene synthase.

To our knowledge, this is the first study that has attempted to
model the flux of reducing power into the MEP production
pathway based on the idea of a balance between electron
supply and demand. Our hypothesis invokes mechanisms that
are incompletely understood and thus is to some extent specula-
tive. Nevertheless, it appears to have significant predictive power
in explaining the already documented responses of isoprene
emission to PAR, ci and (with some caveats) temperature.
Moreover, this hypothesis provides a parsimonious explanation
for the response of isoprene emission to drought. Under moderate
to mild drought where the photosynthetic apparatus is not
damaged (Cornic and Briantais, 1991), carbon assimilation is
first reduced by stomatal closure (and thus reduced ci). Under
higher drought severity, this reduction is greatly increased by

decreased ATP in water-deficient leaves (Lawlor and Tezara,
2009), which reduces the photosynthetic metabolic potential
(Apot), even if ci increases due to light respiration. The resulting
oversupply of reducing power ensures that isoprene emissions
continue at a high rate, although carbon assimilation is reduced
(Niinemets, 2010). However, a decrease in ATP could also
reduce isoprene emissions. Under extreme drought, however,
damage to the photosynthesis apparatus eventually results in
the cessation of both carbon assimilation and isoprene emission.

A strong diurnal cycle is observed in isoprene emission at
canopy scales. Low emissions during early morning and late
afternoon contrast with high emissions during the midday
period (Hewitt et al., 2011; Keenan and Niinemets, 2012). Our
hypothesis explains this as a consequence of higher PAR and
temperature, and lower ci due to partial stomatal closure asso-
ciated with higher evaporative demand in the midday period.
This simple explanation does not require the intervention of a cir-
cadian clock, as had been proposed by Hewitt et al. (2011).
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Note that we are not advocating a function of isoprene emis-
sions as an ‘electron sink’ as was earlier proposed (e.g. Logan
et al., 2000). It is clear from the findings of Li and Sharkey
(2012) that the quantity of electrons used in isoprene synthesis
is far too small for this function to be plausible. The low affinity
of IspS for DMADP already argues strongly against this notion
(Silver and Fall, 1995; Schnitzler et al., 1997). Our model
implies that the allocation of reducing power to this pathway
occurs under those conditions when electron availability is in
excess, which fortuitously occurs during stress events when iso-
prene biosynthesis and emission is advantageous to the plant
(e.g. Sharkey et al., 2001; Vickers et al., 2009).

Our results provide an alternative, robust approach to model-
ling isoprene emissions for global change applications. But
more work is needed before implementing the model in a
global context. Particular attention should be given to the influ-
ence of enzymatic activity on temperature responses of the mod-
elled rates of isoprene. The values of the parameters a and b (eqn
1), and their potential species and environmental dependencies,
also call for further investigation at several scales:

(1) For leaves, by setting up experiments that could test interac-
tions among the short-term responses of isoprene emission

to different environmental drivers, and associated variations
in the excess of electrons (i.e. isoprene/assimilation responses
to ci at different PAR fluxes, together with isoprene/assimila-
tion response to PAR at different ci); and the influence of
growth conditions on the parameters. Note that, as most of
the process-based models are closely linked to photosynthesis
models, informationon the values of Vcmax andJmax associated
with the isoprene standard emission rate would be valuable.

(2) Forecosystems, by upscaling the model from the leaf scale to
the canopy, with particular attention to the response of Iso/
Agross. This step would require a representation of the
canopy structure and vertical mixing as well as the canopy
chemistry accounting for isoprene oxidation, deposition
and OH regeneration.

(3) At the global scale, with the possibility of using remotely
sensed formaldehyde column concentrations to better con-
strain model parameters for different plant function types
and environments. Formaldehyde is a product of isoprene
oxidation. As it is observed by satellite, with global cover-
age, numerous studies have used formaldehyde data to inves-
tigate isoprene emission at larger scales (Palmer et al., 2003,
2006; Barkley et al., 2008; Stavrakou et al., 2009; Fortems-
Cheiney et al., 2012).
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A comprehensive approach to isoprene modelling would also
have to account for longer-term acclimation over a time scale
of weeks to months, including responses to antecedent tempera-
tures (Guenther et al., 2006), phenological stages, and differ-
ences between the short-term and acclimated responses to CO2

(Sun et al., 2012), which are presumably mediated by transcrip-
tional control of the MEP pathway enzymes. It would be of par-
ticular interest to examine whether these acclimatory changes in
isoprene emission are correlated with acclimatory changes in

reducing power. However, some acclimatory shifts are unlikely
to be explained by a model based on reducing power alone. For
example, growth at higher temperatures leads to increased emis-
sion rates measured at a common temperature (Pétron et al.,
2001; Niinemets et al., 2010), whereas reducing power at a
given temperature tends to be reduced by high growth tempera-
tures due to a decline in the Jmax/Vcmax ratio (Hikosaka et al.,
1999; Onoda et al., 2005). Longer-term responses of isoprene
emission to changes in growth temperature are therefore
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presumably governed by other factors, including transcriptional
control of the MEP pathway enzymes.

Conclusions

A simple model of the biochemistry and physiology of iso-
prene emissions has been developed and used to test the hypoth-
esis that the reducing power available to the synthesis pathway
for isoprene varies according to demands of carbon assimilation.
The model explains the observed response of isoprene produc-
tion to environment and the coupling/decoupling between
carbon assimilation and isoprene emission. The model has the
potential to improve global-scale modelling of vegetation iso-
prene emissions, as well as emissions of isoprenoids that do
not originate from storages.

SUPPLEMENTARY DATA

Supplementary data are available online at www.aob.oxford-
journals.org and consist of details of the following. The G93

algorithm for prediction of isoprene emission from vegetation;
the Niinemets model based on quantifying the NADPH cost
for isoprene synthesis; and the model for photosynthetic
carbon assimilation based on the Farquhar model.
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Niinemets Ü, Tenhunen JD, Harley PC, Steinbrecher R. 1999. A model of iso-
prene emission based on energetic requirements for isoprene synthesis and
leaf photosynthetic properties for Liquidambarand Quercus. Plant, Cell and
Environment 22: 1319–1335.
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